
401

Functional Testing

of IEC 61850 Based Systems

Working Group
B5.32

December 2009

Functional Testing of
IEC 61850 Based Systems

Working Group
B5.32

December 2009

Members

Iony Patriota (BR) – (Convener), Aitzol García (ES), Pascal Postec (FR),
Marcelo Paulino (BR) , Alex Apostolov (US) , Tetsuj Maeda (CH), Dennis Holstein (US), Fred

Steinhauser (AT), Stephen Thompson (GB), Marco C. Janssen (CH),
Hyuk Soo Jang (KR), Jian-cheng Tan (CA)

Corresponding Members

Damien Tholomier (FR), Marcus Steel (AU), Gareth Baber (GB),

Benemar Alencar (BR), Ubiratan Carmo (BR), Benton Vandiver (US) ,
Ricardo Cartaxo (PO), Allan Cascaes (BR), Ren Yanming (CN),

Sun Bo (CN), Byung-Tae, Jang (KO)

Copyright © 2009
“Ownership of a CIGRE publication, whether in paper form or on electronic support only infers right
of use for personal purposes. Are prohibited, except if explicitly agreed by CIGRE, total or partial
reproduction of the publication for use other than personal and transfer to a third party; hence circu-
lation on any intranet or other company network is forbidden”.

Disclaimer notice
“CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept
any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties
and conditions are excluded to the maximum extent permitted by law”.

ISBN: 978-2-85873-088-9

3

Table of Contents

Table of Contents .. 3

List of Tables ... 7

List de Pictures .. 9

Abstract .. 11

Executive Summary .. 13

Résumé .. 15

1. Introduction ... 17

1.1 Limitation on the scope of functional testing ... 17
1.2 A unified approach for functional testing ... 17
1.3 An IEC 61850 functional test framework ... 18
1.4 A guide to reading this report .. 18

2. Functional Requirements ... 21

2.1 Introduction ... 21
2.1.1 Methods to define a function .. 21
2.1.2 Introduction to the next sections ... 21
2.2 SAS Functional Specification .. 22
2.2.1 Definition of a function .. 22
2.2.2 Specification in terms of IEC 61850 ... 23
2.3 SCL Functional Specification .. 24
2.4 UML Functional Specification ... 24
2.4.1 UML Overview .. 24
2.4.2 Applicable UML Subset .. 25
2.4.3 Use Case tables and Diagrams .. 25
2.4.3.1 Use Case Overview .. 25
2.4.3.2 Use Case Presentation ... 26
2.4.3.3 Use Case Template .. 29
2.4.4 Communications Diagrams .. 32
2.4.5 Sequence Diagrams ... 33
2.4.6 Deployment Diagram .. 34
2.4.7 Activity Diagrams.. 35
2.4.8 State Diagrams .. 38
2.5 SAS Performance Requirements .. 40
2.5.1 General .. 40
2.5.2 System Performance Requirements ... 40
2.5.3 Functional Performance Requirements .. 41
2.5.4 Logical Node Performance Requirements .. 41
2.6 UML Performance Requirements ... 42

3. Test Requirements ... 45

4

3.1 Introduction ... 45
3.2 Conformance tests .. 45
3.3 Factory Acceptance Tests (FAT) .. 45
3.4 Interoperability Tests .. 46
3.5 Site Acceptance Tests (SAT) .. 47
3.6 Functional Tests ... 47
3.7 Performance Tests ... 49

4. Test Coverage ... 51

4.1 Introduction ... 51
4.2 SAS Functional Failures ... 51
4.3 SAS Components ... 52
4.4 Physical and Logical Node Failure Modes .. 53
4.5 Hazard and Operability Studies .. 53
4.6 Failure Mode and Effects Analysis ... 55
4.7 Test Coverage .. 56

5. Functional Test Tools ... 59

5.1 Introduction ... 59
5.2 System Testing Tools Requirements .. 59
5.3 IEC 61850 System Types ... 62
5.3.1 Systems with Partial Implementation of IEC 61850 62
5.3.2 Systems with Full Implementation of IEC 61850 63
5.4 IEC 61850 Test System Components ... 63
5.5 Tools for Functional Testing of IEC 61850-9-2 Based Merging Units 66
5.6 Tools for Functional Testing of IEC 61850-9-2 Based IEDs 67
5.7 Tools for Functional Testing of IEC 61850-8-1 and IEC 61850-9-2 Based Bay
and Substation Level Distributed Applications ... 68
5.8 Functional Test System Architecture .. 69
5.8.1 Process Simulator .. 72
5.8.2 Network Simulator .. 74
5.8.3 Operator Simulator ... 75
5.8.4 Test Timer .. 75
5.8.5 Network Scheduler ... 76
5.8.6 Test Arbiter ... 76
5.9 Conclusions .. 77

6. Functional Test Specification .. 79

6.1 Introduction ... 79
6.2 SAS Test Specification ... 79
6.3 SAS Functional Test Connections .. 81
6.4 SAS Functional Test Setup ... 83
6.5 SAS Functional Test Start .. 83
6.6 SAS Functional Test Stop ... 85
6.7 SAS Functional Test Disconnections .. 86
6.8 SAS Functional Test Verdict ... 86

7. Test Case Example ... 89

7.1 Introduction ... 89

5

7.2 Substation Specification ... 89
7.3 SAS Functional Specification .. 90
7.4 SAS Design Specification ... 94
7.5 SAS Performance Requirements .. 94
7.6 Failure Mode and Effects Analysis ... 95
7.7 SAS Functional Test Specification .. 96
7.8 Test Coverage .. 100

8. Conclusions .. 103

8.1 FMEA and HAZOP ensures adequate test coverage 103
8.2 System configuration tools are the key to success 104
8.3 UML provides the ability to manage system level complexity 104
8.4 Test specification template is the formal checklist .. 105
8.5 Next steps for future CIGRE SC B5 research ... 105

Appendice A. Functional Specification Template .. 107

A.1 Revision History .. 107
A.2 Introduction ... 107
A.3 Overall Description ... 108
A.4 Functional Requirements .. 108

Appendice B. Functional Test Specification Template 111

B.1 Revision History .. 111
B.2 Introduction ... 111
B.3 Overall Description ... 112
B.4 Functional Test Specifications .. 112
B.5 Test Coverage .. 114

Appendice C. XML Schema for Functional Test ... 117

C.1 Introduction ... 117
C.2 Revision History .. 117
C.3 Purpose .. 117
C.4 Schema Organization ... 117
C.5 XML Schema .. 117

Appendice D. UML Overview ... 127

D.1 Introduction ... 127
D.2 Function Definition .. 127
D.3 Use Case .. 128
D.4 Communication Diagram .. 128
D.5 Sequential Diagram .. 129
D.6 State Diagram ... 130
D.7 Other Functions .. 130
D.8 Conclusion .. 131

Appendice E. SCL Example Design Specification 133

Glossary ... 149

References ... 151

7

List of Tables

Table 1 – Classification of Functional Performance .. 41
Table 2 – Formalized Specification of LN/PICOM Performance 42
Table 3 – IEC 61882 HAZOP Guide Words .. 53
Table 4 – IEC 61882 HAZOP Guide Words for PES ... 54
Table 5 – IEC 61882 HAZOP Guide Words for Logical Nodes 54
Table 6 – Failure Mode and Effects Analysis Table Format 55
Table 7 – Simplified FMEA Format .. 55
Table 8 – FMEA Test Coverage .. 56
Table 9 – HAZOP Test Coverage .. 56
Table 10 – Class VoltageOutput Specification .. 72
Table 11 – Class CurrentOutput Specification ... 73
Table 12 – Class DigitalInput Specification ... 73
Table 13 – Class DigitalOuptut Specification .. 73
Table 14 – Class NetworkSimulator Specification ... 74
Table 15 – Class Operator Specification ... 75
Table 16 – Class TestTimer Specification ... 75
Table 17 – Class Timer Specification .. 75
Table 18 – Class TestScheduler Specification .. 76
Table 19 – Class Scheduler Specification ... 76
Table 20 – Class TestArbiter Specification .. 77
Table 21 – Class Arbiter Specification ... 77
Table 22 – SAS Test Specification .. 80
Table 23 – SAS Test Connection .. 81
Table 24 – SAS Test Setup ... 83
Table 25 – SAS Test Start ... 84
Table 26 – SAS Test Stop ... 85
Table 27 – SAS Test Disconnection .. 86
Table 28 – SAS Test Verdict ... 86
Table 29 – Functional Implementation Conformance Statement 91
Table 30 – Multiple Uses of Logical Nodes ... 92
Table 31 – PICOM Type and Description .. 93
Table 32 – HAZOP Analysis of Logical Nodes .. 95
Table 33 – Failure Mode and Effects Analysis .. 96
Table 34 – Functional Test Case ... 97
Table 35 – Test Coverage Analysis for HAZOP Guide Word No 100
Table 36 – Test Coverage Analysis for all HAZOP Guide Words 101
Table 37 – Functional Use Case Revision History .. 107
Table 38 – Functional Use Case Template ... 110
Table 39 – Functional Test Specification Revision History 111
Table 40 – Functional Test Case Template ... 113
Table 41 – HAZOP Guide Word Meaning for Logical Nodes............................... 114
Table 42 – Logical Nodes Failure Modes .. 114
Table 43 – Functional Test Coverage ... 115
Table 44 – FMEA Test Coverage .. 115
Table 45 – Functional XMLTest Revision History .. 117

9

List de Pictures

Picture 1 – Representation of a Function .. 23
Picture 2 – Decomposition of a Function ... 24
Picture 3 – Example Communication Diagram .. 32
Picture 4 – Example Sequence Diagram ... 34
Picture 5 – Example Deployment Diagram .. 35
Picture 6 – Example Activity Diagram ... 37
Picture 7 – Example State Diagram .. 39
Picture 8 – Functional Performance Specification by UML Sequence Diagram 43
Picture 9 – Simplified Model of Logical Node .. 54
Picture 10 – System Hierarchy UML Class Diagram ... 60
Picture 11 – Function Boundary Definition .. 62
Picture 12 – Full Implementation Architecture ... 63
Picture 13 – System/Configuration Tool, Simplified Block Diagram 64
Picture 14 – Network Simulator Interface .. 65
Picture 15 – Testing of Merging Units ... 67
Picture 16 – Testing of IED With Process Bus and Hard Wired Interface 68
Picture 17 – Testing Bay or System Level Distributed Applications Testing 69
Picture 18 – Functional Test Setup ... 71
Picture 19 – Test Package .. 72
Picture 20 – Diagram of the Test Case Components .. 80
Picture 21 – Substation Layout Diagram ... 90
Picture 22 – Functional Use Cases ... 91
Picture 23 – Functional Specification by UML Communication Diagram 93
Picture 24 – Functional Specification by UML Sequence Diagram 93
Picture 25 – Physical Design by UML Deployment Diagram 94
Picture 26 – Performance Specification as UML Sequence Diagram 95
Picture 27 –Test Setup as a UML Communication Diagram 97
Picture 28 – Interactions of Contributions to System Test Specification 103
Picture 29 – System Configuration Tools .. 104
Picture 30 – UML Communication Diagram .. 109
Picture 31 – Car Starting Funcition .. 127
Picture 32 – Start Car Communication Diagram .. 129
Picture 33 – Car Starting Sequence Diagram.. 129
Picture 34 – Car Starting State Diagram ... 130

11

Abstract

Introduction of IEC 61850 standard on Substation Automation Systems requires
new ways to test their performance and functionality. This brochure describes a
structured method to specify functional tests on systems based on this standard.
An object oriented approach is proposed, using UML, text and XML formats. Con-
formance and interoperability tests are not treated, being already standardized.

Key words
IEC 61850, Functional Test, Performance Test, Substation Automation Systems.

13

Executive Summary

Today’s IEC 61850 solution providers and product vendors face a triple challenge.
They must optimize the quality of increasingly complex protection and automation
systems – and to do so more quickly and cost-effectively than ever before – in or-
der to deliver reliable systems that yield a high return-on-investment and provide a
competitive advantage.

Time and time again, IEC 61850 solution providers and product vendors have
successfully demonstrated the power of automated functional testing to thoroughly
test, rapidly develop and reduce the cost of delivering high-quality/reliable protec-
tion and automation applications. Yet, 85% of those vendors that attempted com-
prehensive functional testing fail. This high failure rate is symptomatic of a mindset
that views comprehensive functional testing as a quick, turnkey solution.

There is no question that functional test automation can allow organizations to
produce higher-quality products while leveraging existing resources. However
successful organizations realize that a comprehensive functional testing solution is
only one part of the answer. They must make an investment in planning a quality-
driving development process, training quality-related personnel and developing the
right test framework.

This technical brochure provides practical insight into the lessons learned by those
that have successfully followed the guidelines described. It answers questions
such as:

 What is the strategic role of functional testing of IEC 61850 systems?
 What are the value-added benefits associated with implementing a com-

prehensive functional test program?
 What is the best approach to ensure the success of your functional testing

efforts?
 What should you look for in functional testing of IEC 61850 systems?

To be more specific, this brochure builds on the concept of black-box testing which
is a quality assurance process used to verify that an application’s functionality
works accurately, reliably, predictably and securely. Functional testing can involve
either manual or automated methods. Either way, it entails a series of tests that
emulate the interaction between IEC 61850 intelligent electronic devices and the
application in order to verify whether or not the application does what it was de-
signed to do.

As described in this brochure, the comprehensive approach uses the Unified Mod-
eling Language and Use Cases to describe the applications from a user point of
view. Failure Mode and Effects Analysis augmented with Hazard and Operability
Analysis as defined by IEC are recommended as suitable tools to list the possible
faults on components, logical nodes and functions to ensure complete test cover-
age. Such an approach delivers the long term advantages of reliability, predictabili-

14

ty and consistency, and productivity that shorten test cycles and increase product
quality.

Collectively, these advantages enable quality assurance to accurately assess
quality levels, make sound decisions regarding release readiness and minimize
deployment risk.

15

Résumé

Aujourd'hui, les fournisseurs de solutions CEI 61850 et les vendeurs de produits
associés sont confrontés à un triple défi. Ils doivent optimiser la qualité de plus en
plus complexe des systèmes de protections et d’automatismes - et le faire plus
rapidement et efficacement que jamais – dans le but de fournir des systèmes
fiables pour produire un fort retour sur investissement et obtenir un avantage
compétitif.

À maintes reprises, les fournisseurs de solutions CEI 61850 et les vendeurs de
produits ont démontré avec succès la capacité des tests fonctionnels automatisée
à tester complètement, à développer rapidement et réduire les coûts de fourniture
de solutions de protections et d’automatismes de haute qualité et de haute fiabili-
té. Pourtant, 85% des vendeurs qui ont tenté ces tests fonctionnels complets ont
échoué. Ce fort taux d'échec est symptomatique d'un état d'esprit qui perçoit ces
tests fonctionnels complets comme une solution clé en main rapide.

Il n'est pas question de remettre en cause le fait que l'automatisation des tests
fonctionnels puisse permettre de produire des systèmes de qualité supérieure tout
en exploitant les ressources existantes. Mais les organisations qui l’ont réalisé
avec succès constatent qu’une solution de tests fonctionnels exhaustifs n’est
qu’une part de la réponse. Ils doivent faire un investissement dans une planifica-
tion de qualité du processus de développement, la qualité de la formation du per-
sonnel et la mise en oeuvre d’un bon environnement d’essais.

Cette brochure technique fournie une application pratique issues des leçons rete-
nues par ceux qui ont suivi avec succès les directives proposées. Il répond à des
questions telles que:

 Quel est le rôle stratégique des tests fonctionnels des systèmes basés sur
la norme CEI 61850?

 Quels sont les bénéfices associés à la mise en oeuvre d'un programme ex-
haustif de tests fonctionnels?

 Quelle est la meilleure approche pour garantir la réussite de vos efforts en
matière de tests fonctionnels ?

 Que devez-vous rechercher dans la réalisation de tests fonctionnels sur les
systèmes CEI 61850 ?

Pour être plus précis, cette brochure s'appuie sur le concept de tests type « boîte
noire » qui est un processus d'assurance qualité utilisé pour vérifier que la fonc-
tionnalité d'une application répond correctement, de manière fiable, prévisible et
sûre. Les essais fonctionnels peuvent être réalisés par des méthodes manuelles
ou automatisées. Quoi qu'il en soit, il comporte une série de tests qui émulent
l'interaction entre équipements CEI 61850 et l’environnement afin de vérifier si
l'application peut réaliser ce pour quoi elle a été conçue.

Comme décrit dans cette brochure, l'approche globale utilise l’« Unified Modeling
Language » (UML) et des cas d'utilisation pour décrire les applications d'un point

16

de vue utilisateur. L’analyse des modes de défaillance et des conséquences
complétés par l'analyse de risque et d'exploitabilité tel que défini par la CEI, sont
les outils pratiques recommandés pour lister les éventuels défauts sur les
composants, les nœuds logiques et les fonctions afin d’assurer une couverture
complète des essais. Cette approche offre les avantages à long terme de fiabilité,
de prévisibilité et de cohérence, ainsi que de productivité qui raccourci les cycles
d’essais et augmente la qualité du produit.

Ensemble, ces avantages permettent d'obtenir les garanties nécessaires à
l’obtention, avec précision, des niveaux de qualité requis, de prendre des
décisions judicieuses concernant la libération du produit et de minimiser les
risques liés au déploiement.

17

1. Introduction

Over the last few years considerable work has been carried out in the develop-
ment of a new standard IEC 61850, “Communication Networks and Systems in
Substations” which is set to make wide ranging changes to the way substations
and power systems are designed, built, commissioned, operated, maintained and
extended. This standard is unique in technology respects in that whilst it is imple-
mented in individual devices, it is directed at system wide benefits.

The current state of the art in substation design is based on a master-slave rela-
tionship between Intelligent Electronic Devices (IEDs). As such, communication
between networked IEDs is very deterministic – the master requests an action and
the slave executes the response in a prescribed manner. IEC 61850 introduces
mechanisms to operate networked IEDs in a peer-to-peer relationship. For exam-
ple, IEC 61850 introduces the use of a state change message that notifies all lis-
tening IEDs that one or more of the IED’s functions has changed state. It is the
responsibility of the receiving IED to respond in an appropriate manner. This ca-
pability introduces functional testing challenges, which is the subject of this report.

The purpose of this report is therefore to provide utility management and their
technical support staff an overview of the functional testing of IEC 61850 based
systems. IED vendors, tool suppliers, and system integrators should use this
technical brochure to ensure that their products and services provide the
capabilities needed to execute the functional test plans and procedures tailored for
each utility’s 61850 based system configuration.

1.1 Limitation on the scope of functional testing

Part 10 of IEC 61850 (61850-10) addresses conformance (type and
interoperability) testing and as such this subject is not addressed in this report; nor
are the IED physical characteristics addressed. Furthermore, the members of the
CIGRE Task Force decided that this brochure should not attempt to
comprehensively address all possible testing scenarios. Specifically it should not
address testing of non-functional requirements such as maintainability, reliability,
availability, usability, security, etc. They decided to use a few Use Case and other
UML examples to describe the functional testing methodology, and leave it to
future working groups to address the scenarios in their area of interest.

1.2 A unified approach for functional testing

Any approach to functional testing of IEC 61850 must consider the requirements
for real-time performance, failure modes and effects, and tools needed to efficient-
ly conduct the testing. Clearly a coherent and unified approach for functional test-
ing is needed, which led the task force members to select the Unified Modeling
Language (UML) to describe the IEC 61850 functions and test environment which
can also be used for describing the architectural arrangement of the system-
under-test (SUT), test drivers and measurement units. The relationships among
SUT components and the test environment components are defined as objects in

18

the UML vernacular. The UML diagrams proposed are more fully described in Sec-
tion 2.4. Failure Modes and Effects Analysis (FMEA) and Hazard and Operability
Analysis (HAZOP) are suggested as tools to investigate the fault coverage at-
tained by test plans. FMEA and HAZOP methods are more fully described in Sec-
tion 4.5.

1.3 An IEC 61850 functional test framework

We conclude the introduction by reiterating the objective of this technical brochure.
The number of protection and automation applications based on IEC 61850 and
the functional test scenarios is only limited to the imagination of the substation pro-
tection and automation engineer design team. In effect, there is no limit to the
number of applications and test cases that can be envisioned. For this reason, this
technical brochure defines a framework or methodology for functional testing of
IEC 61850 based systems and evaluation of its fault or test coverage, which vali-
dates this approach using a complete example. We leave it to others to use this
framework to explore the functional testing requirements for applications and de-
tailed scenarios in their area of interest. Their feedback and recommendations to
improve this framework is expected and should result in a future update of this
technical brochure.

1.4 A guide to reading this report

This technical brochure is not a tutorial describing the technical details of IEC
61850 or the underlying technologies of functional testing. We assume the reader
has this knowledge base and will use the cited references in this report as a sup-
plement. We have attempted to write each chapter using the language of protec-
tion and automation engineers, and we have provided intuitively clear visuals (dia-
grams, pictures) to ease the pain of translating these recommendations into con-
crete test plans and procedures.

The second chapter, Functional Requirements, describes the methods for specify-
ing functional and performance requirements for protection and automation sys-
tems that are useful for designing functional test cases. UML is described as the
recommended specification tool, supplemented by design documents using IEC
61850-6’s Substation Configuration Language (SCL). SCL is only related to the
UML specification during test execution, after the system has been integrated and
both specifications include the necessary level of detail. The basic idea is for the
test tool, to get access points for signal injection and monitoring by importing the
UML specification as a script and importing the SCL package to gain access to all
network points.

The third chapter, Test Requirements, is a review of the different types of func-
tional test requirements common to protection and automation systems, and their
attributes that distinguish them from conformance and interoperability tests as de-
fined in IEC 61850-10.

The fourth chapter, Test Coverage, the concept of test coverage is introduced as a
tool to define the required number of test cases. Test coverage is the method used

19

to ensure that all fault and function test objectives are addressed. Chapter 4 also
describes the use of FMEA and HAZOP tools to list the possible faults of a com-
ponent, logical nodes and functions of IEC 61850 based systems. These tools are
proposed to assess the fault coverage of any proposed test plan.

The fifth chapter, Functional Test Tools, describes the architecture of the proposed
functional testing system. UML Test Profile, as defined by the Object Management
Group (OMG), is used as a conceptual framework to define the test components,
simulators, and their behavior as needed for testing protection and automation
systems.

The sixth chapter, Functional Test Specification, shows how to design a functional
test case based on the proposed architecture. Test cases are structured in phas-
es, which are described in an object-oriented way complemented with a user-
friendly table, and optionally in XML format. XML details are presented in an ap-
pendix of this report.

The seventh chapter, Test Case Example, illustrates the proposed method by
specifying the functions of an example SAS system, designing the test cases, and
evaluating their fault coverage. The example will strictly obey the approach defined
in previous chapters.

The eighth chapter, Conclusions, summarizes the testing approach taken in the
brochure, and explores future developments in this field.

Appendix A, Functional Specification Template, is a proposed model for specifying
the functions of an SAS system, according to the approach taken in this brochure.

Appendix B, Functional Test Specification Template, is a proposed model for spe-
cifying functional testing of an SAS systems, based also on the approach taken in
this brochure.

Appendix C, XML Schema for Functional Test, contains the listing of an XML
Schema for specifying test cases, according to the test architecture proposed in
this brochure.

Appendix D, UML Overview, introduces the basics of UML and describes how dif-
ferent UML diagrams can be used to provide a complete picture of the system
being described.

21

2. Functional Requirements

2.1 Introduction

Functional requirements express a project specification from an external or user
point of view. For SAS testing purpose, functional requirements should be
identified and documented as the standard against which functional test results
should be compared for approval.

This chapter covers the different ways SAS functions can be specified, and the
changes in functional specifications brought by the introduction of IEC 61850.

2.1.1 Methods to define a function

Nowadays, automation and protection functions are defined by utilities in a textual
form, possibly together with logical equations, tables and state diagrams. The
actual method of specification varies from utility to utility, depending on the existing
philosophy. For instance, the interlocking function of a high voltage apparatus can
be specified by means of an equation, a ladder diagram or even a table listing the
conditions that permit (or inhibit) its operation.

This approach, whilst being the historical way of doing it, has the disadvantage of
not leading to a standardized way of specifying functions. To overcome this
limitation, new specification methods have to be adopted and this is the aim of the
chapter.

As previously discussed in Section 1, it has been decided to use the UML 2.0
(Unified Modelling Language), as the basis for that purpose, and SCL (Substation
Configuration Language), the language defined by the IEC 61850 to achieve
interoperability among configuration and test tools, thus automating the testing
procedure.

It must be stressed, however, that the IEC 61850 does not define functions, only
their interface to the communication network, so the SCL schema presented in this
standard does not cover function definition. Consequently it will have to be
extended to cover the internal logic of the IEDs.

This chapter defines formal ways to specify functions and their performance
requirements. Some example cases will be used throughout the chapter,
illustrating how the different elements of the functional and performance
specification (i.e. text, SCL, UML) compare and interact.

2.1.2 Introduction to the next sections

In the second section the chapter functions will be grouped into classes and, for
each one, the applicable ways of specification are indicated. Reference is made to
the SAS Functional Specification Template, in the appendix.

22

The third section is devoted to the functional specification using the SCL. This
language can describe the allocation of user functions, the data structure of the
devices and the communication between Logical Nodes, via the communication
network.

The fourth section will use UML to specify SAS functional requirements. A subset
of diagrams from UML will be used in this brochure. These are

 Use Case Diagrams;
 Communication Diagrams;
 Sequence Diagrams;
 Activity Diagrams;
 State Diagrams; and
 Deployment Diagrams.

System performance requirements will be covered in the fifth section of the
chapter. They will be split into 'functional performance requirements' (for which
classes of performance are defined) and 'logical node performance requirements'
(defined by means of the PICOM type and classes defined in IEC 61850-5).

Finally, in the sixth section, UML will be used to specify the performance
requirements, primarily using Sequence Diagrams of each function.

2.2 SAS Functional Specification

2.2.1 Definition of a function

Mathematically, a function is a transformation that, given the values of n inputs,
produces the values of m outputs. In a SAS, the situation is quite similar, that is, to
define a function there must be a way to express the outputs in terms of the inputs.
Typical inputs and outputs for SAS functions are:

Inputs

- Digital values from the process (e.g. status of the circuit breaker, tap
position);

- Analogue values from the process (e.g. currents, voltages);
- Commands from local and remote operators (e.g. open isolating switch,

raise voltage);
- Internal variables.

Outputs

- Commands to the process (e.g. open breaker);
- Events and alarms to the operator (e.g. protection pick-up);
- Events and alarms to the data-logging;
- Internal variables (e.g. authorization to operate a circuit breaker).

23

The function’s behavior is also determined by its parameters, which are defined in
IEC 61850-4 as 'variables that define the behavior of the functions of the SAS and
the IEDs within a given range of values'. Examples are listed below:

- Maximum voltage difference in synchronism-check function;
- Reclose time in Autoreclose function;
- Start value in Overcurrent protection function.

Picture 1 depicts the concept of a function. It must be stressed that the outputs are
not necessarily activated simultaneously with the inputs, since functions may
incorporate time delays.

Picture 1 – Representation of a Function

2.2.2 Specification in terms of IEC 61850

The IEC 61850 standard defines entities called Logical Nodes (LN), which are 'the
smallest part of a function that exchanges data'. A complete function is performed
by means of the interaction of one or more LNs, thus some functions may be
completely realized inside a single LN and others may need several acting
together. In addition, the deployment of logical nodes across IEDs is also a factor
in the way that a specific function is realized. A function may be completely
encapsulated inside a single IED (itself containing several LNs), or it may be
performed by 2 or more IEDs using IEC61850 communication between them.

So, the specification of a function requires the definition of the following:

- Listing of the IEDs involved;
- Listing of the LNs involved;
- Inputs/outputs of the LNs;
- Parameters of the LNs;
- Behavior of the LNs;
- Exchanged messages between LNs;
- Performance requirements.

Picture 2 shows an example, in a generic way, of a function executed by two LNs.
This illustrates their interaction as well as the communication with the exterior of
the function.

Function OutputsInputs

...

Parameters

24

Picture 2 – Decomposition of a Function

2.3 SCL Functional Specification

As defined on IEC 61850, SAS functions can be specified directly using SCL, the
Substation Configuration Language. As its name implies, this XML standard is
ideal to define the design functional specification, which may differ from a user
functional specification. Although based on pure text, XML and SCL need
specialized skills, patience and training to be read, being ideal for computer
interpretation. Users normally are not expected to be trained to specify SAS
functionality in SCL as this would be produced by appropriate tools.

Being a design specification, SCL contains details needed to allocate logical
nodes to functions, not necessary from a user functional specification, but required
for functional testing. This aspect is important as it allows the test engineer to get
network access to all logical nodes and messages, as points for signal injection
and monitoring during testing.

In summary, a SCL functional specification is necessary to design functional tests,
together with a user functional specification. The former provides access to
network points and logical nodes, while the later supplies desired functional
behavior from a SAS. The user functional specification can possibly be expressed
in text of using UML.

2.4 UML Functional Specification

2.4.1 UML Overview

The Unified Modeling Language (UML 2.0) is a standard means by which complex
conceptual structure and functionality can be represented and communicated us-
ing easy to grasp diagrams and tables. UML is applicable to a wide variety of ap-
plications from business processes to software engineering, although it is perhaps
in the latter application area that it has its greatest use.

This section describes a subset of UML diagrams that are recommended for use in
describing the functions within the substation under test. It is assumed that the

Logical node 1 Logical node 2

Outputs

Inputs

Parameters Parameters

FUNCTION

25

reader is familiar with UML diagramming concepts. However, Appendix D gives a
short introduction to UML diagrams for those who aren’t.

2.4.2 Applicable UML Subset

The full UML 2.0 specification describes a large number of different diagram forms
and structures that are applicable to a multitude of procedures and situations.
Many of these diagrams have limited or insignificant use in the description of SAS
functionality. To avoid unnecessary complexity in diagram usage, and to impose
conformity on the use of UML in the modeling of SAS functionality, it is recom-
mended that a primary subset of diagrams is used to describe SAS functionality,
with a secondary subset of UML diagrams being employed only to provide addi-
tional explanation or clarification of SAS functionality where necessary.

The primary subset of UML diagrams consists of the following:

 Use Case Diagrams – to indicate expected behavior from a user or client
perspective of the function being described

 Communications Diagrams – to describe the message flows expected in
the relevant function

 Sequence Diagrams – to describe the sequence of events and messages
within the relevant function

 Deployment Diagrams – To describe the physical allocation of logical
nodes, IEDs and network apparatus.

The secondary subset of UML diagrams can optionally be used to document addi-
tional information which may be necessary and appropriate to the functional de-
scription. Typically these will be

 Activity Diagrams – To elaborate further on expected behavior of the func-
tion being described, especially in terms of procedural flow.

 State Diagrams – To indicate that the function being described has several
states, possibly each one of which exhibits differing behavior.

These diagrams are recommended to expand on functionality which is complex or
has several possible modes/states of operation. They are not required to be pro-
vided for all functional descriptions where those functions can be adequately de-
scribed by the primary subset.

Note that examples of the use of the various diagram types appear in this section
in order to demonstrate how they can be applied. These examples use everyday
functions and requirements to illustrate their use. Examples of their use in a SAS
are given in chapter 7.

2.4.3 Use Case tables and Diagrams

2.4.3.1 Use Case Overview

26

A Use Case presents a view of the behavior of a function or a system from the
perspective of a client of that function or system. It is a top-level view which
doesn’t provide details of how functions are performed, instead it focuses on ex-
pected outcomes (Goals) from user/client provided input and data. Users/clients in
a use case are known as Actors, who have interaction with a system/function in
order to achieve the goal. Actors provide input (requests, data) into the sys-
tem/function to initiate or continue a function. The following types of actors are
common to SAS:

 Operators – station and remote system operators that use and request
functions from the SAS;

 Process – station equipment connected to the SAS;
 Engineering – maintenance and other engineering people that design, test,

configure or maintain the SAS.

A Use Case consists of a number of Scenarios which capture different possible
outcomes that can occur in the system or function. The normally expected out-
come, i.e. the use case showing successful achievement of the goal along the
normally expected route, is known as the Main Success Scenario (MSS). Scena-
rios resulting in the same goal achieved by a different route are possible and are
known as ‘Alternatives’. Other scenarios in which the outcome is different from the
MSS, i.e. failure conditions where the main goal is not achieved, are known as
‘Extensions’. A combination of an MSS, with optional Alternatives and Extensions
is generally sufficient to describe even very complex requirements.

2.4.3.2 Use Case Presentation

A Use Case is most usefully presented using text which can describe the MSS and
the Extensions. In the earlier example use case of a driver starting a car the MSS
would describe the case of the car starting correctly first time. An alternative is de-
fined where the car is started by a different method, for example a push start or a
starting handle. Extensions describe the scenarios where the car fails to start for
various reasons (i.e. the goal is not achieved).

Now let’s take an SAS related example of an operator commanding the system to
manually close the circuit breaker, either locally or remotely. The MSS could be as
follows:

27

Note that in the remote operation use case the manual close timer is not required.

In an IEC61850 based system the actions provided by ‘System’ will be performed
by logical nodes. The logical nodes involved in this sort of operation would typical-
ly be

 IHMI – Human Interface (local);
 ITCI – Telecontrol interface (remote);
 CSWI – Switch Controller;

MSS (Remote Operation)
1. Remote Workstation enters command to close the circuit breaker
2. System checks if remote commands are enabled
3. System checks if closure of CB is permitted
4. System performs interlocking check to validate that CB can be closed
5. System initiates CB closure and waits for closure to complete
6. System checks that CB has closed successfully
7. System informs remote workstation of successful closure of CB

Extensions
2a. Remote commands are not enabled;

.1 System advises remote workstation of command failure
Exit

3a. closure of CB is blocked;
.1 System advises remote workstation of command failure

MSS (Local Operation)
1. Local workstation enters command to close the circuit breaker
2. System checks if local commands are enabled
3. System checks if closure of CB is permitted
4. System starts manual close timer and waits for expiry
5. System performs interlocking check to validate that CB can be closed
6. System initiates CB closure and waits for closure to complete.
7. System checks that CB has closed successfully
8. System informs local workstation of successful closure of CB

Extensions
2a. Local commands are not enabled;

.1 System advises local workstation of command failure
Exit

3a. closure of CB is blocked;
.1 System advises local workstation of command failure

Exit
5a. Interlock checks prevent closure of CB;

.1 System advises local workstation of command failure
Exit

7a. CB fails to close;
.1 System advises local workstation of CB closure failure

Exit

28

 XCBR – Circuit Breaker Controller;
 CILO – Interlocking function.

Furthermore some operations in both use cases are common and could be moved
into a secondary use case that could then be referenced from the main use case.
Thus, moving common use case operations into a secondary use case, and subs-
tituting the actors for logical nodes, the resulting use cases could be as follows –

MSS (Local Operation)
1. Operator enters command at local workstation to close the circuit breaker
2. IHMI checks if local commands are enabled
3. <<Check and Close CB (local)>> (Reference to a secondary use case)
4. IHMI informs workstation of state of CB

Extensions
2a. Local commands are not enabled;

.1 IHMI advises workstation that local commands are not enabled
Exit

MSS (Remote Operation)
1. Operator enters command at remote workstation to close the circuit

breaker
2. ITCI checks if remote commands are enabled
3. <<Check and Close CB (remote)>> (Reference to a secondary use case)
4. ITCI informs workstation of state of CB

Extensions
2a. Local commands are not enabled;

Check and Close CB
1. CSWI checks if closure of CB is permitted
2. CSWI starts manual close timer and waits for expiry
3. CILO performs interlocking check to validate that CB can be closed
4. XCBR initiates CB closure.
5. XCBR checks that CB has closed successfully
6. CSWI updates state of CB to ‘Closed’

Extensions
1a. closure of CB is blocked;

.1 CSWI update state of CB to ‘blocked’
Exit

2a. Operation is remote, no timer required
.1 Continue from 3

3a. Interlock checks prevent closure of CB;

.1 CSWI update state of CB to ‘interlock blocked’
Exit

5a. CB fails to close;

29

2.4.3.3 Use Case Template

A use case template is proposed which is used to formalize, provide consistency
and aid completeness, in the definition of use cases. The overall template is
known as the Functional Implementation Conformance Statement (FICS) and con-
tains three sections.

a) Functional Overview

This section is the main introductory section and describes the general details of
the function that the use case is going to describe.

Functional Implementation Conformance Statement
Code Short distinctive name of the function from the SAS
Name Phrase that declares the main objective of the function
Description Longer description or summary of the function objective
Customer Identification of owner, contractor or integrator of substation
Substation Identification of substation
SCL File Substation configuration language file and version, if available
Primary User
(Actor)

Role name or description of the primary functional actor/user of the use case
among people, system, etc. (ex. Operation, Engineering, Process, Dispatch)

Secondary User
(Actor)

Role name or description of the secondary functional actor/user of the use
case among people, system, etc. (ex. Operation, Engineering, Process, Dis-
patch)

Stakeholder &
Interest

Name of the stakeholder and interest of the stakeholder in the use case

b) Function Description

This section describes the related aspects, such as triggers and post conditions, of
the function that the use case is going to describe.

Function Description
Trigger Which action(s)/event(s) of the primary/secondary users initiate the Use Case
Components
or Logical
Nodes

(Codes of) Component(s) architecture or Logical Node(s) that implement or
realize the function or use case, taken from the SCL file, if available

Process
Equipments

(Codes of) Associated substation process equipments, affected by the func-
tion

Performance Goal or quantification of function objective (Ex. execution time, records accu-
racy, etc.)

Preconditions Expected state of the automation system, substation or its environment before
the use case may be applied (Ex. Closed breakers, switches, etc.)

Post conditions
on Success

Expected state of the automation system, substation or its environment after
successful completion of the use case (Ex. Tripped breakers, alarms, record-
ings, etc.)

Post conditions
on Failure

Expected state of the automation system, substation or its environment after
unsuccessful completion of the use case (Ex. Breaker failure, etc.)

c) Use Case Description

30

This section describes the scenarios of the use case. One instance of this section
will be used to define the MSS, and other instances of the section describe Alter-
native Scenarios (i.e. successful achievement of goals by a different path) and
Sub-Scenarios that are <<used>> by the MSS and the alternatives (and by the
other sub-scenarios in this set).

Use Case Description
Use Case Name See below
Basic
Course Descrip-
tion

Flow of events performed during normal state
1 Actor Event, step or condition of successful execution
… …. ….
N System Event, step or condition of successful execution

Extensions Flow of events performed during abnormal states
1 Failure &

Failure
Mode

Actor Execution step
…. ….
System Execution step

… … … …
N Failure &

Failure
Mode

Actor Execution step
…. ….
System Execution step

In the FICS it is proposed that a convention for Use Case names is defined.

The top level Use Case in the FICS should be called MSS. This establishes the
main success scenario of the use case.

Alternative success scenarios are named ASS (- description -), for example ASS
(Remote Request).

Sub-scenarios which describe functionality common to several other scenarios,
and which are therefore <<used>> from those scenarios, are named USS (- de-
scription -), for example USS (Check Interlock).

These are illustrated in the example FICS below.

 d) FICS Example

Applying these templates to the example of the closure of the circuit breaker yields
the following:

Functional Implementation Conformance Statement

Code CB Manual Closure

Name Operator Closure of Circuit Breaker

Description Operator requests the closure of the circuit breaker which is performed by the
SAS after various checks have been performed. The closure can be requested
locally or remotely

Customer Anytown Power Inc.

Substation Number 1

31

SCL File n/a

Primary Actor Operator
Secondary Ac-
tor

System

Stakeholder &
Interest

Function Description
Trigger Operator enters local command
Components
or Logical
Nodes

IHMI, ITCI, CSWI, CILO, XCBR

Process
Equipments

Circuit Breaker

Performance No intentional delay is expected except due to normal component processing
Preconditions Circuit Breaker is open
Post conditions
on Success

Circuit breaker is closed

Post conditions
on Failure

Circuit breaker is open

Use Case Description
Use Case Name MSS

1 Operator Enters command to manually close CB
2 IHMI checks if local commands are enabled
3 << USS(Check and Close CB) >>
4 IHMI informs operator of successful closure of CB

Extensions 2a. Local commands are not enabled
1 IHMI advises operator that local commands were not enabled
- - exit

Use Case Description
Use Case Name ASS (Remote Operation)

1 Remote
Operator

Enters command to manually close CB

2 ITCI checks if remote commands are enabled
3 << USS(Check and Close CB) >>
4 ITCI informs remote operator of successful closure of CB

Extensions 2a. Remote commands are not enabled
1 IHMI advises operator that local commands were not enabled
- - exit

Use Case Description
Use Case Name USS(Check and Close CB)

1 CSWI checks if closure of CB is permitted
2 CSWI starts manual close timer and waits for expiry
3 CILO performs interlocking check to validate that CB can be

closed
4 CSWI initiates CB closure
5 XCBR Closes CB and checks that CB has closed successfully
6 CSWI Updates state of CB to ‘Closed’

Extensions 1a. Closure of CB not permitted
.1 CSWI Updates CB state to ‘CB Closure Not Permitted’
- - Exit
2a. Request is from ITCI
.1 CSWI Manual closure timer does not need to be run

32

- - Continue from 3
3a. Interlock checks prevent closure of CB
.1 CSWI Updates CB state to ‘CB Interlocked’
- - exit

 5a. CB fails to close
 .1 CSWI Updates CB state to ‘CB Closure Failed’
 - - exit

2.4.4 Communications Diagrams

Communication diagrams show how different objects in a system communicate
and collaborate in order to achieve the functional goal. Communication diagrams
consist of

 Objects (Boxes) representing blocks of functionality within the system;
 Lines between the objects showing pathways of communication;
 Message names that depict the messages flowing along the lines;
 Arrows that show the direction of message flow.

Optionally a communication diagram can also have sequence numbers that show
the sequence in which messages are sent. The style of numbering used is open to
debate as UML2.0 proposes a nested numbering scheme that shows levels of
messages as well as sequence (e.g. 5.1.2.5.1), but this can get very cumbersome
if there are many levels and many messages. It is therefore recommended in this
brochure that a ‘flat’ numbering scheme is used which is just a single number
showing sequence of messaging without indicating levels. Sequence diagrams –
described in section 2.4.5 – provide the means for describing sequencing of mes-
sages in more detail.

A communication diagram describing the objects and message flows for the CB
closure example defined in section 2.4.3.1 is shown below. It can be seen that log-
ical nodes lend themselves to being represented as objects in the communications
diagram.

Picture 3 – Example Communication Diagram

XCBR CILO

CSWI

1: Local User Requests CB Close

2: Perform Interlock Check

3: Interlock Response4: Close CB Request

5: Close CB Result

6: Command Result
IHMI ITCI 1: Remote User Requests CB Close

6: Command Result

33

In a typical SAS Communication Diagram the objects will be Logical Nodes and
the messages between them will be commands, responses, alarms, values and
other signals that are defined in the IEC61850 standard.

2.4.5 Sequence Diagrams

Sequence diagrams show an alternative view of collaboration between various
objects in the system. A sequence diagram has a fixed format which shows

 sequences of messages;
 elapsed time;
 periods of control within objects.

The basic element of a sequence diagram is an object (or Participant), which is
represented as a box at the top of the diagram, with a vertical line (Lifeline) des-
cending from the box. The lifeline represents time. Activation bars on the lifeline
show periods when that participant is active. A diagram consists of two or more
participants with messages shown as horizontal lines between the lifelines. The
horizontal message lines have arrows showing the direction of message flow.

The following diagram shows the Circuit Breaker closure example described in
section 2.4.3.1 presented as a sequence diagram.

Note that a message flow from one lifeline to another does not necessarily mean
that control also moves to the target participant. Participants may send out several
messages to other participants before finally relinquishing control to another.

Also note that the example diagram shows the use case of a successful achieve-
ment of the goal as described by the MSS in section 2.4.3.1. This is a good rela-
tionship between a sequence diagram and a use case where the diagram directly
relates to a single use case scenario. Alternatives and Extensions may be shown
on the same sequence diagram (using Interaction Frames) but this is not a strong
feature of sequence diagrams, and if the alternatives and extensions are complex
or multifunctional then the diagrams become overly complicated. Instead it is rec-
ommended that alternatives and extensions are each shown on separate se-
quence diagrams. Thus the use cases described in section 2.4.3.1 will result in
several sequence diagrams.

The diagram below illustrates a single sequence diagram for the case where the
local operator successfully closes the CB.

34

Picture 4 – Example Sequence Diagram

2.4.6 Deployment Diagram

Deployment diagrams show how the various components identified in previous
diagrams, specifically the logical nodes, are configured on the hardware compo-
nents within the system. Deployment of logical nodes is outside the scope of
IEC61850 but knowledge of it is paramount to successful testing of the system.

A deployment diagram consists of

 Device Nodes – identifying the hardware or software devices in the system
on which software components are deployed. These are drawn as three-
dimensional boxes. Outer level nodes represent the IEDs themselves. Inner
level nodes represent logical devices inside the IED.

 Deployed Artifacts – identifying the software components (artifacts)
present in each device node. These are 2-dimenional boxes containing the
name of the artifact. For an IEC61850 based SAS the artifacts will be Logi-
cal Nodes.

 Communication Path – identifying the means of communication between
the device nodes. (Note that in the case of SAS communications for
IEC61850 this is assumed to be Ethernet.)

 Tagged Values – supporting information in each device node or deployed
artifact, such as address or device name, to further specify the deployment
environment.

Tagged Values in the IED device nodes should specify the following items:

 Device Node IP Address

IHMI CSWI XCBR CILO

Local Operator Requests
CB Close

Perform Interlock Checks

Interlock Response

Close CB Request

Close CB Response

Command Result

35

 Device Node IED name

Tagged Values in the LD device nodes should specify the following items:

 Name of the Logical Device

Tagged Values in the Deployed Artifacts should specify the following items:

 Name of the Logical Node

The deployment diagram below illustrates the deployment of logical nodes in-
volved in the local control of the circuit breaker.

Picture 5 – Example Deployment Diagram

2.4.7 Activity Diagrams

Activity diagrams show procedural flow in a system where Actions are performed
in response to decisions, as part of loops or sequentially. Activity diagrams can
also be used to show parallel flows of activity. An Activity diagrams consist of:

 Actions – tasks performed by the function;
 Flows - lines linking actions and other features;

<<device>>
;B1CB1

:Control

XCBR

<<address>>
;200.0.0.10

<<device>>
;B1PC1

:Protection

CSWI

<<address>>
;200.0.0.11

CILO

<<device>>
;B1LC1

:Interface

IHMI

<<address>>
;200.0.0.12

36

 Decisions – selecting from alternative flows;
 Forks – initiation of 2 or more parallel flows;
 Joins – synchronization point for 2 or more parallel flows.

Activity diagrams may show actions that are performed by different parts of a sys-
tem or different modules of a program, and to aid in the visualization of this, an
Activity diagram allows Partitions to be shown where the different actions (and
other features) may be located in the different partitions on the diagram to show
where they are performed. These partitions, sometimes called Swim Lanes, ap-
pear on the Activity diagram as vertical (or horizontal) lines dividing the diagram
into Activity Partitions.

In an SAS activity diagram it may be useful to show the partitions (swim lanes)
representing the different logical nodes that perform the function being described.

The activity diagram below shows the local CB Closure example. A similar dia-
gram will exist for remote closure.

37

Picture 6 – Example Activity Diagram

IHMI CSWI XCBR CILO

Receive ‘Close
CB Request’

Close CB

Check CB status

Start manual close
timer and wait

[local commands enabled]

Advise user of
result of request

[CB close not permitted]

Perform interlock
checks

[Interlocks block closure]

Update reporting
state of CB

EXIT
POINT

38

2.4.8 State Diagrams

State diagrams show the different states that a system may occupy while perform-
ing the functions being described. They are useful to show behavior of a system in
terms of events and resulting actions, especially if the states and actions are mod-
eled in several use cases. A State diagram consists of:

 States; these may be
o Passive - waiting for 1 or more events which must occur before the

state can be exited
o Active - performing some work after which there is an automatic

transition to another state (although 1 or more events can also occur
to cause the state to exit)

 Transitions; each of which consist of

o Event (or Trigger) – condition that initiates the transition
o Guard – condition that determines if the transition is acted on
o Activity – some behavior that is executed as part of the transition

A state is represented diagrammatically as a box and a transition as a line be-
tween two boxes (states) supported by a text label which defines the Event, Guard
and Activity. An Event is a spontaneous condition, such as external signals, timers
expiring and user input, which are processed by the functions being modeled. A
Guard is a condition that allows, or denies, the acceptance of the event. For ex-
ample, an overcurrent event may be ignored if overcurrent protection is disabled.
An Activity allows for some actions to be initiated as part of the transition. Typical
actions include starting timers, output of data (to a user) or generation of a log en-
try.

Event, Guard and Activity are all optional, so that a transition may occur without a
guard or without an activity, or without both. A transition without an event is possi-
ble and is usually used to show exit from an activity state once the activity has
completed. Transitions usually cause a change in state but Internal Transitions
can occur where an event, protected by a guard, causes an activity without a
change in state being made. These are shown on a state diagram by the text de-
scribing the Event, Guard and Activity of the transition appearing inside the box
representing the state.

The diagram below shows a sample state diagram for the local/remote request of
the CB closure.

39

Picture 7 – Example State Diagram

Strictly speaking a Guard condition on a transition is really stating that there are
two states to consider, one where the transition is accepted and one where it isn’t.
However, state diagrams can become over complicated if too many states are
shown, so Guard conditions on transitions allow diagrams to be simplified. But
complex Guard conditions can make the diagram too complicated as well. A good
state diagram is one which achieves a balance between states and guards. In the
above example it would have been perfectly legal to remove the ‘CB Open with
Closure Denied’ state and put additional guard conditions on the transitions from
the remaining ‘CB Open’ state, but this adds complexity to the diagram which
could result in poorly understood requirements for testing.

CB Open with Closure Permitted

Manual Close Timer Running

Closure Request from Local Operator
[Local Commands]
/Start Manual Close Timer

Manual Close Timer Expires
[Interlocking Prevents Closure]
/Advise user of CB status

Manual Close Timer Expires
[Interlocking Permits Closure]
/Initiate CB closure

CB Close Timer Running

CB Close Timer Expires
[CB Closed OK]
/Advise user of CB status

CB Closed

CB Close Timer Expires
[CB Close Failed]
/Advise user of CB status

Final State

Event

Guard

Activity

Closure Request from Remote Operator
 [Remote Commands Enabled &
Interlocking Permits Closure]
/Initiate CB Closure

CB Open with Closure Denied

Initial
Pseudostate

Permit Closure Deny Closure

Closure Request from Local Operator
/advise operator that CB closure is denied

Closure Request from Remote Operator
/advise operator that CB closure is denied

Internal
Transition

40

2.5 SAS Performance Requirements

2.5.1 General

In addition to the functional requirements of the intended substation automation
system, it is also necessary to specify its performance requirements. The flexibility
afforded to the IEC 61850 system designer by the free allocation of functions to
devices (both logical and physical) and the use of mainstream communication
technologies such as Ethernet is limited by the performance requirements, which
cover issues such as response times, availability and reliability, and time
synchronization. Together with other constraints (which may include aspects such
as environmental conditions, substation topology, redundancy of main protections
and so on), the performance requirements impact on the allocation of functions
and logical nodes to IEDs and also influence the topology of the communication
system and choice of its components. The performance requirements are clearly
an input when determining the test specification for an IEC 61850 system.
Performance requirements may be classified as functional and non-functional but,
as discussed in part 1.1, this document is concerned only with functional
performance requirements.

The performance requirements of an IEC 61850 SAS can be specified in a
hierarchical structure, with system-level requirements broken down into functional
and logical node requirements. In [5] it was observed that different approaches to
the specification process could be envisaged depending on a particular customer’s
level of involvement in specifying the IEC 61850 details. The level at which
performance requirements are specified by the customer will equally be dependent
on this level of involvement. A customer who requests an IEC 61850 compliant
system but has no involvement in the IEC 61850 details will issue performance
requirements at the system level only, leaving functional and logical node
requirements to be established by the system designer. On the other hand, a
customer who desires greater involvement in the IEC 61850 details may well issue
a specification which includes performance requirements at the level of functions
or logical nodes.

2.5.2 System Performance Requirements

System-level performance requirements are likely to be specified for IEC 61850
substation automation systems in much the same manner as for conventional
systems. The requirements tend to be expressed informally in words, and may be
quantitative or qualitative or both. The content varies from customer to customer
but typically performance parameters such as those listed below are specified
under the most onerous system loading conditions:

 Time from operation of a protection element to opening of circuit breaker.
 Time from initiation of a command at the HMI to execution at the process

level.
 Time from change of state at the process level to indication at the HMI.

41

 Time from generation of an alarm or event at the process level to logging at
the station level.

 Resolution for time-tagging of alarms and events.
 Time to change between HMI displays.
 Availability.

Some customers may specify performance parameters at different system loading
levels, classified for example as Normal, High and Peak loading. The system-level
performance requirements are used to determine requirements at the functional
and logical node levels.

2.5.3 Functional Performance Requirements

A more formalized approach to specifying performance requirements at the
functional level can be realized by the creation of classes of time requirements.
This is similar to the concept of message performance classes described in sub-
clause 13.6 of IEC 61850-5 which are applied at the PICOM level. Here we wish to
identify functional performance time requirements rather than message
performance and so it is proposed that functional performance classes are
designated using the letter ‘F’. The time requirements of all functions can then be
identified according to these performance classes, for example:

Table 1 – Classification of Functional Performance

Class Time Example of Function
F1 100 ms Tripping of CB by distance protection operation
F2 500 ms Closing of CB by synchronized switching
F3 1 s Closing of CB by operator control
F4 5 s Disturbance record retrieval
...

The performance class identified for each function can be entered in the
Functional Implementation Conformance Statement (FICS) created for the
function.

Note that Annex D of IEC 61850-5 defines the total response time of a function as
the sum of the starting time, the internal processing time, the overall transfer time
of a PICOM, and the delay time in the related process interface. Annex G gives
guidance on typical performance requirements for each function type.

2.5.4 Logical Node Performance Requirements

Functions are decomposed into logical nodes (LNs), and the LNs making up a
particular function are identified in the FICS for that function. For example, LNs
associated with the distance protection tripping operation in Table 1 would be
TCTR, TVTR, PDIS, CSWI, XCBR and IHMI. Performance at this level is
dependent both on the execution time of individual LNs or combinations of LNs
and on the transmission delay for messages passed between LNs. The user can
specify the required time performance for a group of LNs, including their

42

interconnecting PICOMs, by showing a time constraint in a UML sequence
diagram. This method will be described in section 2.6.

The performance attributes of individual PICOMs are described in clause 13 of
IEC 61850-5. The performance requirements can be formalized by presenting the
PICOM message types and performance classes in tabular form, as shown for
example in Table 2. PICOM messages flow from logical source LNs to logical sink
LNs. They are classified by message type (types 1 to 7) according to the type of
function they fulfill, and by performance class (P1, P2 and P3) depending on the
criticality of the application, with P3 being the most onerous class, as described in
sub-clause 13.6 of IEC 61850-5. A full list of available PICOM types, including type
ID numbers, is given in annex B of IEC 61850-5.

Table 2 could be extended as required to cover other aspects of PICOM
performance other than transmission time, such as data integrity and cause of
transmission.

Note that time synchronization requirements for the system must also be specified,
and these have their own performance classes described in sub-clause 13.7.6 of
IEC 61850-5.

Table 2 – Formalized Specification of LN/PICOM Performance

Source LN Sink LN PICOM Content PICOM Type ID Message Type (Class)
TCTR PDIS Process Value (sample) 1 4 (P3)
TVTR PDIS Process Value (sample) 1 4 (P3)
PDIS CSWI Trip 22 1A (P3)

IHMI Event / Alarm 10 3
CSWI XCBR Trip 1 1A (P3)

PDIF Response 12 1B (P3)
IHMI Event / Alarm 10 3

XCBR CSWI Response 12 1B (P3)

2.6 UML Performance Requirements

The performance of a function in an IEC 61850 SAS is dependent upon the
execution time of the individual LNs and combinations of LNs that make up the
function and on the transmission delay for their interconnecting PICOMs. The UML
sequence diagram, introduced in 2.4.5, can be extended to include time
constraints in order to specify the performance requirements of groups of LNs and
their interconnections within a function.

Considering again the example used in 2.5.4 of the tripping of a circuit breaker by
distance protection, we can define time constraints as shown in Picture 8. The
passage of time flows from the top to the bottom on a UML sequence diagram,
and time constraints define time critical portions within the lifetime of the function.
Here, separate constraints are shown for two such time critical processes. Firstly,
the required operating time of the distance protection is defined, including
generation of current and voltage data by the instrument transformer LNs, TCTR

43

and TVTR, and the transmission of the trip command from the distance protection
PDIS to the switch checkcontroller CSWI. Secondly, the total time from initiation of
the function to opening of the circuit breaker is specified, illustrating that time
constraints may have to take into account the operation of devices external to the
SAS, such as the mechanical opening time of the circuit breaker as reported by
XCBR, in this example. Indication at the HMI is not considered time critical in this
example and so no time constraint is specified for this part of the function.

{<
 2

5m
s}

{<
 1

00
m

s}

Picture 8 – Functional Performance Specification by UML Sequence Diagram

Note that timing constraints could be added to other types of UML diagrams,
notably communication diagrams, and it might be beneficial to do so for certain
types of function. However, it is in the sequence diagrams that timing constraints
are largely to be defined.

45

3. Test Requirements

3.1 Introduction

For the purpose of this report, a System under Test (SUT) is an assembly of IEDs
which individually have been conformed to the IEC 61850 standard. That means
that each IED has been certified by an independent test authority or supplier. A
certified IED is supposed to be able to operate with all other certified IEDs, for the
functions which have been tested.

This chapter presents a brief review of the different test requirements which shall
be performed over a SUT based on IEC 61850, including:

 Conformance Tests
 Factory Acceptance Tests (FAT)
 Interoperability Tests
 Site Acceptance Tests (SAT)
 Functional Tests
 Performance Tests.

3.2 Conformance tests

One of the first requirements for the functional tests of an integrated SAS is the
conformance test of every IED or Device Under Test (DUT) which belongs to the
SAS. The conformance tests are performed to prove the adherence of a specific
IED to the IEC 61850 standard requirements. A conformance test is the type test
for the communication system of the incorporated IEDs. The IEC 61850 standard
is focused on the interoperability, using data, function and device models,
including all services available at the application level. Consequently the
conformance tests shall demonstrate the capability of the DUT to operate with
other IEDs from several makers in a specified way, and in accordance with the
requirements of the IEC 61850 standard.

Among the goals of conformance tests the following are applicable:

 to reduce the risks of non interoperability to an acceptable level;
 to provide the client with the maximum guarantee that the IED under test

will interoperate with other certified devices;
 to provide a type test of the communication interface of the device.

3.3 Factory Acceptance Tests (FAT)

Even for a conventional system, the factory acceptance testing (FAT) is normally a
complete test of an integrated system at the vendor facility, with application
functions, data base, HMI, displays and logs performed on a specific utility system.
Before performing these tests, all the wiring interconnecting the different panels
and devices must be completed. During these tests, all specified functions

46

included in the client specification shall be tested. Any malfunction detected must
be repaired.

FAT tests are performed in a per unit basis and are quite similar to the factory
acceptance tests performed on conventional digital systems. The main difference
is the communication module of the IED under test which must consider the IEC
61850 standard, as well as the communication network. The FAT must include the
verification of the vertical messages, from the IEDs to the substation level
equipment, as well as the horizontal messages, from one IED to the others. The
performance of the specified functions must also be verified during the FAT.

One alternative for the FAT is to perform the system tests at a third party site,
known as laboratory acceptance tests (LAT), which may be closer to the client’s
office or even at the client’s offices. This alternative has the advantage of allowing
a closer participation of the utility technical staff, leading to a faster process of
engineering actualization with the new technology and less problems during the
site acceptance tests.

3.4 Interoperability Tests

Differently from the conformance tests, interoperability tests are applied to an
assembly of IEDs of the same or different manufacturers. They shall demonstrate
that these IEDs, when interconnected by a proper communication system, may
operate together, sharing data and other information and performing their
functions in a secure way and with acceptable performance.

One of the basic requirements for interoperability tests is that all the involved IEDs
have passed the conformance tests, especially with respect to the distributed
functions. Distributed functions are those functions which have logical nodes in
different physical devices, and exchange horizontal messages using a publisher-
subscriber communication mode. Interoperability tests shall also include the
verification of vertical messages, using client-server communication mode. These
are the messages exchanged between the IEDs at the bay level and the
substation level equipment.

In order to perform the interoperability tests it is necessary to have the required
means to simulate the communication network that will interconnect the IEDs
under test and to simulate the operation of those IEDs which are not available.
The test system shall be able to simulate the messages which are exchanged by
the IEDs assembly during the operation of the different functions. The worst case
scenario can also be considered when performing the tests.

The interoperability tests shall also include the verification of the vertical
messages, using a client-server communication mode. These are the messages
exchanged between the IEDs at the bay level and the substation level equipment.
IED servers must manage one context per client, such as the list of reports, the list
of events, the switchgear equipment statuses and commands, the values of the
analogic measures like currents, voltages and temperatures, the transfer of files

47

etc. Therefore, the performance of the system under test will also depend on the
number of clients to be considered. The data mapping shall be verified as well, in
order to assure that the interpretation of data names is consistent between
different suppliers.

3.5 Site Acceptance Tests (SAT)

Site Acceptance Tests (SAT) are those tests performed on the deployment site to
confirm the correct functioning of each IED after mounting. The following are
requirements to initiate the SAT:

 All primary equipment has been installed, connected and tested;
 The control building and rooms are prepared to receive the integrated SAS;
 The communication LAN equipment are installed, connected and tested;
 All the IEDs and other equipment which are part of the integrated SAS are

installed and connected;
 The substation level equipment (HMI, gateways, servers, GPS equipment

etc) with the respective data base and operation screens are installed or
configured, connected and preliminarily tested;

 All documentation listed above is available at the site;
 Appropriate test equipment, as well as test computer with the required

engineering tools are available at the site;

Considering that system tests have been successfully performed during the FAT
or LAT period, the SAT will be very much simpler. It shall be done in stages. The
utility may need to disable some control or protection features to preclude any
undue operation.

3.6 Functional Tests

System functional tests supplement conformance and interoperability tests to
guarantee that all functional requirements are met. Because IEC 61850 is a
communication standard, it does not standardize the functions of IEDs. Therefore,
the customer has to perform functional tests himself or delegate the responsibility
to a third party.

While conformance and interoperability tests are applied to a specific IED, system
functional tests are applied to an IED assembly, including the communication
network, and are intended to verify their joint correct operation. For functional
testing of IEC 61850 based systems, it is necessary to describe which types of
functions they must perform, derived from the user specification.

Functional tests shall comply, as close as possible, with some characteristics.
They have to be:

 Simple – adequate to user knowledge;
 Repeatable – same output for same input sequence;

48

 Documented – structured and formalized;
 Automatable – computer executable;
 Human readable – textual or graphical form;
 Customer oriented – focus on user requirements;
 Tool independent – common to all testers;
 Supplier independent – common to all IEDs;
 Extensible – easily edited;
 Systematic – structured methods;
 Standardized – based on accepted standards.

In addition to these requirements, the system under test (SUT) must comply with
the customer specification requirements which may include a mixing of devices of
different suppliers. Since there are virtually unlimited combinations of possible
configurations, it is unlikely that all test results will be provided. Therefore, an
adequate level of test coverage must be established in order to define the number
of test cases required. Detailed information on test coverage methods will be given
in the next chapter.

Functional tests must consider SAS with substation bus only, and systems with
substation bus and process bus. Depending on the complexity of the SAS, the
tests may be performed step-by-step, as follows:

 Functional testing of the individual components of the SUT;
 Functional testing of bay level distributed applications;
 Functional testing of substation level distributed application;
 Functional testing of process bus functionalities.

Before functional tests are initiated, the following documentation must be
available:

 System specification, including the single line diagram;
 List of functions and functional behavior;
 Performance requirements of each function;
 Specific and catalog information of all IEDs and other devices to be tested;
 Data model in accordance with the IEC 61850 or signal list;
 Communication system architecture and components;
 Requirements for migration scenarios;
 Definition of responsibility in multi-vendors systems;
 SCD file of the SAS system;
 CID file of each IED which makes up the SUT;
 PICS, MICS and PIXIT files of each IED which makes up the SUT;
 Version control documentation as per IEC 61850 standard;
 Set of engineering tools required;
 Detailed test plan for the FAT and SAT tests.
 FICS – Function Implementation Conformance Statement;

49

The FICS format, described on Chapter 2, is proposed to standardize the
functional specification of Substation Automation Systems.

3.7 Performance Tests

Conformance tests do not verify the correct functioning of an IED assembly,
including the communication system. Also, they do not guarantee that the
performance will be adequate in time response and accuracy of the IEDs
assembly, especially when considering distributed functions. So, conformance
tests must be supplemented by functional and performances testing.

The performance of a distributed function is based on GOOSE messages and on
the publisher-subscriber communication mode. Therefore, it will depend on the
number of GOOSE messages in transit on the network and on their frequency of
occurrancy. The tests shall not only check their interoperability and time
performance, but their endurance in nominal and degraded situations.

Desired performance of a system may be expressed and measured by its time
response and measurement accuracy. These should be specified and tested at
different operational conditions, like voltage collapse, communication failures and
network loading. Normal and worst case conditions should be verified against the
desired behavior.

Performance tests aim to verify that a designed system can attain the specified
requisites related to time and accuracy. Like functional tests, they aim at the
assembled system, being done usually at the user installations by systems
integrators. When possible, they could be done at the factory or Lab, since if the
performance of the SUT is not adequate, it may be necessary to make deep
changes in the project. Their requirements and characteristics are very similar to
performance tests, being usually done at the same time.

As the number of possible functional and performance tests of a system is
unlimited, acceptable test coverage criteria must be defined, as proposed in the
next chapter.

51

4. Test Coverage

4.1 Introduction

In any test plan, it is important to show the level of test coverage of the plan. Test
coverage is a measure of completeness of a test plan, expressed by the set of
possible failures checked by a given test set. FMEA (Failure Mode and Effects
Analysis) [22] and HAZOP (Hazard and Operability Analysis) [21] are two methods
standardized by IEC to analyze the possible failures that a system may present. In
this chapter, these two methods are suggested as possible ways to asses the test
coverage of a SAS.

FMEA is a structured method to correlate all possible failure modes of a system to
their functional failures and effects. It can be used as a design tool, to decide on
project options, or as a maintenance tool, to help plan maintenance policies. In this
chapter, FMEA will be used as a tool to evaluate the failure modes and functional
failures detected by a test case or test plan. The aim is to decide on how much
testing is necessary to prove the effectiveness of the plan, measured by the set of
failure modes it can detect.

HAZOP is also a structured method to identify all possible failure modes of a given
system or installation. It will be used with FMEA to evaluate the fault coverage of
the test cases and plans of SAS.

In the remainder of this chapter, a sequential method to determine test coverage is
proposed. Starting from the functions as described on Chapter 2, all functional
failures of a given SAS will be listed. Then all physical or logical components that
take part on each function will be identified, as well as their failure modes. FMEA
tables and HAZOP matrices will correlate them, in the test design stage, to
evaluate their test coverage.

4.2 SAS Functional Failures

Functional failures represent abnormal states or results from system functions.
They can vary from a complete loss of the function, to a partial degradation of its
expected performance level. Usually, functional failures may be associated with a
function, without correlation to the component or failure mode that causes it. This
distinction is important, for the correct application of FMEA, as the same function
can be the result of many alternate failure modes of several components.

In an SAS, typical functional failures can be associated to the following conditions:

 Absence of output signals/messages
 Wrong output signals/messages
 Wrong destination of output signals/messages
 Wrong timing (delay or pre-emption) of output signals/messages

52

 Wrong sequence of output signals/messages.

Usually, the same function can fail in several ways; each way is considered a
different kind of functional failure. In a protection function, for instance, absence of
tripping during a fault, or the trip of the wrong breaker, or even an excessive delay
in tripping the right breaker should be considered distinct functional failures of the
same protection function. Similar failures can be listed for command and control
functions, supervision, recording, teleprotection, etc.

The correct identification of all possible functional failures is important for the
design of test cases and their test coverage. A complete functional coverage
means the test is able to discover the presence of all possible failures of each
function. When possible, they should be identified independently from the
associated components. The result will be a list of all possible failures of each SAS
function. That is, there are no failures dissociated from a system function.

A standardized format should be followed for the description of each failure.
Usually, a code and a short title are sufficient to completely define a functional
failure. A noun, derived from the main verb that describes the function,
supplemented by any verbs and adverbs are adequate to qualify the fault, such as
unattended performance limits. The following examples show possible ways to
describe failures, with the corresponding codes:

 FNT1: Absence of trip for an internal transformer fault;
 FNT2: Unnecessary trip of a remote breaker during a bus fault.

An adequate coding scheme should be used for failures, so that each failure can
be uniquely identified and distinguished from others. The same coding should be
followed consistently for the whole SAS. Preferably the coding should associate
the failure with the function, such as FNT1.FLR2, to denote failure FLR2 of
function FNT1, and so on.

4.3 SAS Components

For FMEA and HAZOP analysis, components are defined as any part of a system
where failure modes can originate. Physically, SAS systems are composed mainly
by IED (Intelligent Electronic Devices) and network components. IEDs based on
IEC 61850 are modeled as sets of Logical Nodes, while network components are
typically structured as switches, hubs, etc.

Physical components like IEDs and switches are typically programmed electronic
devices (PED), based on digital technologies. Abstract components like logical
nodes are usually software modules or blocks of code that externally act as a
component. Conceptually they can be encapsulated as a single component or
firmware, distributed on several servers or grouped in a unique server. Servers are
also modeled as logical nodes by IEC 61850.

53

4.4 Physical and Logical Node Failure Modes

These failure modes represent abnormal events that may occur on components.
Like functional failures, they can vary from a complete stop of component
behavior, to a partial degradation of its expected performance. Usually, failure
modes should be related to specific components, without correlation to system
functions or functional failures. This distinction is important for the correct
application of FMEA, as the same failure mode can affect several functions,
causing many concurrent functional failures.

Failure modes of physical components are usually related to environmental or
physical causes, like short-circuits, broken or worn-out pieces, etc. Software
components and logical nodes may present novel failure modes, caused by:

 Wrong parameters;
 Wrong code or software bugs;
 Wrong configuration;
 Wrong or absence of input/output signal/messages;
 Wrong timing (delay) for input/processing signals/messages;

For testing purposes, software modules like logical nodes are treated as black
boxes, so that their failure modes are limited to loss or degradation of an expected
external behavior of the component.

4.5 Hazard and Operability Studies

To identify all possible failure modes of a given component, it is proposed to use
HAZOP as defined by IEC 61882 Hazard and Operability Studies (HAZOP
Studies) - Application Guide. According to this standard, failure of any component
can be associated to a Guide Word, following the meaning listed on Table 3. The
table also shows examples of possible logical node (LN) failure modes related to
each guide word.

Table 3 – IEC 61882 HAZOP Guide Words

Guide Word Interpretation

No Complete negation of the design intention.

More Quantitative increase of the design intention.

Less Quantitative decrease of the design intention.

As well as All design intention is achieved with additions.

Part of Only some of the design intention is achieved.

Reverse The logical opposite of the design intention is achieved.

Other than Complete substitution of the original design intention.

Early Something happens earlier than expected relative to clock time.

Late Something happens later than expected relative to clock time.

54

Before Something happens before it is expected.

After Something happens after it is expected.

For Programmable Electronic Systems (PES), the HAZOP standard suggests
specific meanings to each Guide Word, according to Table 4.

Table 4 – IEC 61882 HAZOP Guide Words for PES

Guide Word Interpretation for Programmable Electronic System (*)

No No data or control signal passed

More Data is passed at a higher rate than intended

Less Data is passed at a lower rate than intended

As well as Some additional or spurious signal is present

Part of The data or control signals are incomplete

Reverse Normally not relevant

Other than The data or control signals are incorrect

Early The signals arrive too early with reference to clock time

Late The signals arrive too late with reference to clock time

Before The signals arrive earlier than intended within a sequence

After The signals arrive later than intended within a sequence

Logical nodes, as defined by IEC 61850, have all the properties of PES, so it is
suggested that these guide words can be applied to them as well. To explore the
way logical nodes can fail, consider the general input output model shown on
Picture 9, taken from IEC 61850 standard.

Logical Node

Settings

Status Information

Measured Values

Controls

Status Information

Measured Values

Controls

S
et

tin
gs

Picture 9 – Simplified Model of Logical Node

According to this model, failure modes of a logical node will manifest as loss of
their ability to respond correctly to status, measured, control or setting signals.
These possibilities can be seen on the following Table 5.

Table 5 – IEC 61882 HAZOP Guide Words for Logical Nodes

55

Guide Word Status Measures Controls Settings

No No status No measurement No control No setting

More Measure > expected Setting > expected

Less Measure < expected Setting < expected

As well as Wrong control

Part of Not all status Not all measures Not all controls Not all settings

Reverse Inverted status Inverted measure Inverted control Inverted setting

Other than Unknown control Unknown setting

Early Too few timing setting

Late Status delay Measuring delay Control delay Excess timing setting

Before Sample out of order

After Sample out of order

All these methods can be used in a Failure Mode and Effects Analysis, to
determine the functions affected by any failure mode.

4.6 Failure Mode and Effects Analysis

FMEA is a formal method to analyze the effects of all component failure modes on
the functions of a system. FMECA (Failure Mode, Effects and Criticality Analysis)
is a variant of FMEA where a criticality level is assigned to each failure mode,
according to its consequent impact on system functions. Traditionally, FMEA is
documented in a table format, like Table 6.

Table 6 – Failure Mode and Effects Analysis Table Format

Function Functional Failure Failure Mode Effect
FNT1

… … … …
FNTn

When the effects are known or similar, like not performing a given function or not
passing a given test, a somewhat simplified table can be used, like the model of
Table 7, where the failure modes (FM1, …, FMn) are related to the functional
failures (FLR1, …, FLRn) they impact, on a given system. All failure modes of this
table can be listed using the HAZOP or other method.

Table 7 – Simplified FMEA Format

FMEA
FAILURE MODE

FM1 FM2 FM3 FM4 FM5 … … … FMn

IO
N

A
L

F

A
IL

U

FLR1 X X … … …

FLR2 X X X … … … X

56

… … … …

FLRn X X X … … … X

4.7 Test Coverage

This FMEA format is easily extended to evaluate failure coverage of a given test
plan, by adding the functional test cases affected by each failure mode. Table 8
shows the test cases planned to a given system, added as new lines on the FMEA
table. A line is also added to indicate test coverage.

Table 8 – FMEA Test Coverage

FMEA
FAILURE MODE

FM1 FM2 FM3 FM4 FM5 … … … FMnF
U

N
C

IO
N

A
L

F
A

IL
U

R
E

FLR1 X X … … …

FLR2 X X X … … … X

… … … … … … … … … …

FLRn X X X … … … X

COVERAGE X X X X X … … … X

T
E

S
T

C

A
S

E

T1 X … … … X

… X X … … … X

Tn X … … … X

For each test case line, an X is put on the column corresponding to every failure
mode tested. An X is also put on the crossing of this column with the coverage
line. The number of Xs in the coverage line is an evaluation of the number of
failure modes covered by the test plan. In this way, the test designer can identify
which failure mode is tested, and mainly, which ones are not tested.

Test coverage can also be shown on a table relating the tested components (C1,
…, Cn) to the HAZOP guide words that describes their failure modes, as shown on
Table 9.

Table 9 – HAZOP Test Coverage

 Component

Guide Word C1 C2 C3 … … … … … Cn

No OK X OK … … … … … OK

More … … … … …

Less X … … … … …

As well as X … … … … …

Part of X … … … … … X

57

Reverse … … … … …

Other than OK X OK … … … … … OK

Early … … … … …

Late OK OK X … … … … …

Before … … … … … X

After OK … … … … …

In this table, the word “OK” in a cell means that the failure mode of the component
column related to the guide word row is tested by at least one test case. An “X” in
a cell means that the failure mode exists but is not tested by any test case.
Otherwise, a blank cell means there is no component failure mode related to that
guide word.

59

5. Functional Test Tools

5.1 Introduction

The development and application of complex IEC 61850 based substation or
power plant protection and automation systems requires the development of tools
for their testing that will ensure the correct operation of protection, control,
monitoring, recording and metering functions under normal and abnormal system
conditions.

This chapter discusses the requirements for the tools needed for testing of
complex substation automation systems. The testing tools need to correspond to
the functional hierarchy of the substation automation system. The tools should
support three levels of testing:

 Functional element testing
 Integration testing
 System testing

The tools will also have some differences depending of the level of implementation
of the standard. Two typical types of IEC 61850 based substation automation
systems are considered:

 A Hybrid system - with Substation Bus (IEC 61850-8-1) only
 A Complete system - with Process Bus (IEC 61850-9-2) and Substation

Bus (IEC 61850-8-1)

Tools for testing of both types of systems are proposed based on the following
system components tests:

 Testing of IEC 61850 protocol compliance of the individual components of
the system

 Testing of Merging Units
 Testing of IEC 61850 compliant IEDs
 Testing of bay level distributed applications
 Testing of substation level distributed applications

Requirements for tools that support the configuration, monitoring and reporting of
the testing of complex systems are discussed. Solutions for the testing of the
individual components of the IEC 61850 based system, as well as for the end-to-
end testing of distributed applications are also described.

5.2 System Testing Tools Requirements

IEC 61850 defines a system as “The logical system is a union of all
communicating application-functions performing some overall task like

60

“management of a substation”, via logical nodes. The physical system is
composed of all devices hosting these functions and the interconnecting physical
communication network. The boundary of a system is given by its logical or
physical interfaces. Within the scope of the IEC 61850 series, ‘system’ always
refers to the Substation Automation System (SAS), unless otherwise noted” [1].

The above definition is in the core of the testing tools requirement definitions. The
definition of system boundary and the distinction between logical and physical
interfaces play an important role in the development of the functional testing tools.
Each component of the IEC 61850 system interacts or is related to at least one
other element. Any object which has no relationship with any other element of the
system is obviously not a component of that system.

Depending on the complexity of the system, its components can be simple
functional elements, subsystems or combination of the two. A subsystem is then
defined as a set of elements, which is a system itself, and also a part of the whole
system. Each of these has to be defined in a way that meets the requirement for
testability. This is a characteristic which allows the status (operable, inoperable, or
degraded) of a system or any of its sub-system or elements to be confidently
determined in a timely fashion. Testability attempts to qualify those attributes of
the system which facilitate detection and isolation of faults that affect system
performance.

In the substation protection and automation domain we can consider different
functions performed by the system as subsystems. The hierarchy of a complex
system is shown in Picture 10 as a UML diagram.

Function

Functional
Element

System

Picture 10 – System Hierarchy UML Class Diagram

From Picture 10 it can be seen that the system can contain 1 to many functions
that can have several layers of 1 to many sub functions and at the bottom – a sub
function can contain 1 to many functional elements. The functional elements
correspond to the IEC 61850 logical nodes.

Functional system testing tools are required for testing conducted on a complete,
integrated substation automation system, subsystem or distributed function. The
goal of the test system tools is to help evaluate the IEC 61850 system's
compliance with its specified requirements.

61

System testing tools should support the principles of Black Box Testing. This
means that the test system does not have to have any knowledge of the internal
logic and the behavior of the different subsystems or functional elements included
in it.

The system testing tools should allow tests to be performed in a top-down or
bottom-up approach. This is to a great extent dependent on the purpose of the
test. If the test is a factory acceptance test it might be a good idea to use the
bottom-up approach. In this case the testing starts first with the individual parts of
the system – the functional elements. They are then grouped together to form sub
functions or functions, which are in turn linked into more complex functions until
the complete system is tested.

When we do commissioning or maintenance testing we assume that the individual
functional elements are operating properly, especially if there are no alarms in any
of the IEDs that are included in the system test. In this case a top-down approach
is suitable, since we are interested in the overall performance of the tested system
function and not in the behavior of the components of the system. This fits the
Black Box approach, which means that we take an external perspective of the test
object to derive the test cases and analyze the results.

Tools for performing functional testing of any function or sub function requires the
ability from the test designer to select a set of valid or invalid inputs and determine
the correct expected output for each test condition defined in the test plan. This
will serve to define the evaluation criteria to determine if the test result is PASS or
FAIL.

Since the purpose of functional element testing is to determine if the tested
element has the expected behavior under different realistic test conditions, the
testing tools should allow the simulation of such conditions and at the same
monitor the behavior of the tested element.

One of the key reasons for integration testing is to detect any potential
interoperability problems between the functional elements and/or sub functions
that are integrated together in a function or a system. So the functional testing
tools should not only test the performance of the system, but also observes the
exchanges between the different components of a distributed function being
integrated into a system.

The system testing tools should look at the overall performance of the system from
an external observer point of view. It should support the top-down testing model in
which the system is defined as a whole with its boundaries and behavior, without
considering the details for any part of it. Each sub-part of the system then can be
tested using the same approach until we get to the bottom of the functional
hierarchy where we perform the functional elements testing.

62

At the same time it should support the bottom-up testing - starting with the
functional elements testing and then going up the functional hierarchy by testing
sub-functions until we finish with the overall system testing.

In all cases it is important for the testing tool to be able to clearly identify the
system or function boundary that will define the requirements for simulation by the
test system and monitoring the behavior of the tested function or component.

Picture 11 – Function Boundary Definition

In Picture 11 above SF indicates a sub function that contains K functional
elements. The functional elements are the smallest component in the system that
can be defined with a function boundary, interface and behavior, i.e. that can be
tested.

The testing tools should also include components that will allow the testing of the
different types of systems as described below.

5.3 IEC 61850 System Types

The different requirements for functional testing of the two typical types of IEC
61850 based substation automation systems can be defined based on the
interface with the primary substation equipment: It has to be well understood, due
to the fact that it determines functional boundaries of many different types.

5.3.1 Systems with Partial Implementation of IEC 61850

In systems with partial implementation of IEC 61850 the interface with the process
is identical to the conventional substations, i.e. hardwired connections between:

 secondary side of current and voltage instrument transformers and the
analog inputs of the IEDs

 auxiliary contacts of the breakers and the IED optical inputs
 IED binary outputs and the process control (for example breaker trip coils or

transformer tap changers)

63

The interface between the devices in the substation is based on communications
messages exchange over the substation local area network.

5.3.2 Systems with Full Implementation of IEC 61850

A full implementation of IEC 61850 in a substation protection and automation
system indicates the use of both Substation Bus (IEC 61850-8-1) and Process Bus
(IEC 61850-9-2).

The interface between all devices in the system in this case is based on
communications, with the use of copper cables being limited to:

 DC or AC power
 secondary of the instrument transformers and the merging units
 breaker auxiliary contacts and trip coils and the secondary devices in the

substation.

Picture 12 – Full Implementation Architecture

When we analyze the system in Picture 12, it becomes clear that the requirements
for testing tools will change significantly depending on where we draw the system
boundary. It will also be affected by the use of conventional or non-conventional
sensors.

5.4 IEC 61850 Test System Components

A test system designed for IDs (Intelligent Devices), distributed applications or
systems based on IEC 61850 have multiple components that are needed for the
testing of the individual functions, as well as a complete application. A simplified
block diagram of such a system is shown in Picture 13.

64

Picture 13 – System/Configuration Tool, Simplified Block Diagram

The first component of the test system is the test Configuration Tool. It takes
advantage of one of the key components of the IEC 61850 standard – the
Substation Configuration Language. The Configuration Tool is used to create the
files required for configuration of different components of the test system. It
imports or exports different configuration files defined by Part 6 of IEC 61850.

The test system Configuration Tool reads the information regarding all IEDs,
communication configuration and substation description sections. This information
is in a file with .SCD extension (for Substation Configuration Description) and is
used to configure the set of tests to be performed.

The overall functionality of any IEC 61850 compliant device is available in a file
that describes its capabilities. This file has an extension .ICD for IED Capability
Description.

The IED configuration tool sends to the IED information on its instantiation within a
substation automation system (SAS) project. The communication section of the file
contains the current address of the IED. The substation section related to this IED
may be present and then shall have name values assigned according to the
project specific names. This file has an extension .CID (for Configured IED
Description).

The second component of such a system is a Simulation Tool that generates the
current and voltage waveforms. The specifics of each simulated test condition are
determined by the complete, as well as the configured functionality of the tested
device or application.

The simulation tool requirements will also be different depending on the type of
function being tested. For example, if the tested function is based on RMS values
or phasor measurements, the simulation tool may include a sequence of steps
with the analog values in each of the steps defined as phasors with their

65

magnitude and phase angle. Based on these configuration parameters the
simulation tool will generate the sine waveforms to be applied as analog signals or
in a digital format to the tested components or systems.

If the tested functions are designed to detect transient conditions or operate based
on sub-cycle set of samples from the waveform, an electromagnetic transient
simulation will be more appropriate.

Picture 14 – Network Simulator Interface

Picture 14 shows the simulation tool interface that allows the user to configure the
specifics of the network model, type of fault, fault location, etc. that are then used
to calculate the waveforms to be applied to a device or system under test.

The third part of the test system is the Virtual Merging Unit simulator. While under
conventional testing the waveforms generated by the simulation tool will be
applied to the tested device as current and voltage analog signals, a Virtual
Merging Unit will send sampled measured values as defined in IEC 61850 over the
Ethernet network used for the testing.

The Virtual Merging Unit simulator should support multiple sampling rates and
allow the user to select a protection, power quality, or recording mode. As agreed

66

in IEC 61850 9-2 LE, in the first case the simulator should send 80 samples/cycle
in 80 messages/cycle. Each message contains one sample of the three phase
currents and voltages (WYE class). In the second mode, 256 samples/cycle are
being sent in groups of 8 samples in a single message, thus requiring 32
messages/cycle.

The fourth component of the test system is the Virtual IED simulator that is used to
represent components of the system that are not available at the time of testing,
for example during factory acceptance testing. During the testing this module
send GOOSE messages that the function or Sub function under test uses as
inputs that determine its behavior under the test conditions applied.

The fifth component of the test system is the Test Evaluation Tool that includes the
monitoring functions used to evaluate the performance of the tested elements
within a distributed sampled analog value based system. Such evaluation tool
requires multiple evaluation sub-modules that are targeted towards the specifics of
the function being tested. They might be based on monitoring the sampled
measured values from a tested merging unit, GOOSE messages from a tested
IED, as well as reports or waveform records from the tested device.

The sixth component of the test system is the Reporting Tool that will generate the
test reports based on a user defined format and the outputs from the simulation
and evaluation tools.

5.5 Tools for Functional Testing of IEC 61850-9-2 Based Merging

Units

Since Merging Units are an essential component of any IEC 61850 process bus
based application, they have to be tested to ensure that they provide the required
sampled measured values.

The currents and voltages applied to the Merging Unit will be based on current and
voltage waveforms produced from the network simulator in order to simulate
different system conditions, such as high current faults or low current minimum
load conditions.

At the same time the Test Evaluation tool will need to receive the sampled analog
values from the tested merging unit and compare the individual sampled values
from the Merging Unit with the samples coming from the network simulator. The
testing of Merging Units will require first of all a very accurate time synchronization
of both the test device and the tested MU.

It is necessary to analyze the phase (time) and magnitude differences of the
individual samples and compare these to the calibration specifications of the MU.
Proper documentation and reporting is required in the same manner as meter
testing is performed today.

67

Picture 15 – Testing of Merging Units

Keeping in mind that the standard allows different sampling rates, as step one the
Merging Unit test module shall support the sampling rates defined in IEC 61850 9
– 2 LE. This means that depending on what is the mode of the Merging Unit being
tested, the evaluation tool will receive different messages:

 For protection applications – 80 samples/cycle in 80 messages/cycle
 For power quality and recording applications – 256 samples/cycle in 32

messages/cycle (8 samples per message)

Things are more complicated with a generic implementation of the IEC 61850 9-2
process bus, when the sampling rate can have any value. This will require
appropriate configuration tools and support by the Merging Units simulator.

5.6 Tools for Functional Testing of IEC 61850-9-2 Based IEDs

The testing of different functions in IEDs that are based on sampled measured
values can be achieved in a couple of different ways depending on the
requirements of the specific test. One approach is acceptable when testing the
IED only, while another can be used if the testing includes the complete MU/IED
system. The difference is that in the first case there is no hard wiring between the
test device and the tested IED – i.e. the test system can be communications based
only.

The key component of this module is the Merging Unit simulator described earlier
in the paper. It will have to take the waveforms generated from the Network
Simulator and then format them in the required 80 samples/cycle and multicast the
individual sampled values to the LAN 80 times per cycle (e.g. 80 messages/cycle).

For power quality and recording applications the Merging Unit simulator will have
to take the waveforms generated from the Network Simulator and then format
them in the required 256 samples/cycle and multicast the individual sampled
values to the LAN 32 times per cycle
(8 samples per message).

68

The functions that can be tested in an IEC 61850 9-2 based IED are:

 Protection
 Measurements
 Recording
 Fault location

The testing of these different types of functions available in the IED will be similar
to what was described earlier for the hybrid device. This applies to both the
configuration and analysis modules of the test system.

The test system needs to subscribe to and monitor the GOOSE messages
received from the tested IED that represent the operation of the tested functional
elements in order to determine if the devices operated as required. If the tested
device has relay outputs as well, they will have to be wired into the test device and
their operation (time tag) will be compared with the received GOOSE messages to
determine if the performance of communications based solutions is analogous to
the hard-wired case.

The test system may also retrieve the waveform records from the tested device
and again compare them with the original waveforms from the simulation tool.

Picture 16 – Testing of IED With Process Bus and Hard Wired Interface

Picture 16 shows the system configuration for hybrid testing of IEDs that have
relay outputs and at the same time support GOOSE messages.

5.7 Tools for Functional Testing of IEC 61850-8-1 and IEC 61850-

9-2 Based Bay and Substation Level Distributed Applications

69

The testing of distributed bay and substation level functions that are based on
communications only – IEC 61850 8 – 1 or 9 – 2 – will be similar functionally to the
testing an individual IEDs. The main difference is that in this case there will be
multiple test devices with virtual simulators or analog outputs. The simulation of
the substation and system environment required for the functional testing of bay
and system level functions will require the simulation of multiple merging units
(IEC 61850 9-2 interface) and other IEDs (IEC 61850 8-1 interface).

Considering the fact that 100 MB/s is the common Ethernet today, the number of
Merging Unit simulators may require multiple computers to simulate all the
required sampled analog values and GOOSE messages.

The simulation tool will also be different, because first of all it will require a multi-
node system simulator. Once the results from the simulation are available, it
requires the development of methods to split the results from the Network System
Simulator and distribute them between the individual physical devices that perform
the simulations, as well as to make them available as sampled measured values
from the virtual merging units that participate in the test.

The evaluation of the performance of the distributed functions in this case will be
based on the subscription of the test system components to the GOOSE
messages from the different IEDs participating in the tested distributed
applications. If these devices also have relay outputs hardwired to the test
devices, their operation will have to be monitored as well in order to evaluate the
performance of the tested system and if necessary compare the communications
based to hardwired solutions. [2]. A simplified block diagram of this test system is
shown in the Picture 17.

Picture 17 – Testing Bay or System Level Distributed Applications Testing

5.8 Functional Test System Architecture

70

From a user perspective, it is important that a test system provide means to
specify and realize functional tests that are as independent of SAS and tools
suppliers as possible. In this respect, the following requisites are judged necessary
for functional testing of Substation Automation Systems:

• No specific vendor and manufacturer tool or technology;
• Only generic and normalized requisites;
• Specified by a tool independent language.

To attain these requisites, some suggestions are pertinent to the test architecture:

• Physical devices should be used as proxies/gateways to direct access to
the physical and logical devices in the substation;

• Testing devices should be used with the ability to address, send and
receive messages to/from each selected node;

• Object oriented (UML) classes should be defined to be used in the
gateways/proxies to specify their behavior.

In this respect, the following concepts are borrowed from the UML Test Profile
from the OMG (Object Management Group) to specify the capabilities functional
tests tools:

• Test Architecture - concepts related to test structure and test configuration
(containing the relationship of elements involved in a test project);

• Test Behavior - concepts related to the dynamic aspects of test
procedures;

• Test Data - structures and meaning of values to be processed in a test;
• Test Time - concepts or a time quantified definition of test procedures.

To introduce these concepts, the following picture shows a UML package diagram
of a general architecture for a test system, connected to an SAS. The SAS is seen
as a network of logical nodes, linked to a substation process, and accessed by
local and remote operators. The package representing the Test Architecture
should be able to intercept the interfaces among users and process equipment to
the SAS, and to have access to specific logical nodes through the station and
process networks. These accesses should be bidirectional, that is, the test system
should be capable to monitor or simulate any kind of messages and signals in
these interfaces. These include analog and digital signals to and from the station
equipments, network GOOSE and SV messages among logical nodes, and
operator actions and messages sent and received by human-machine interfaces.

71

PROCESS SAS

N
E

T
W

O
R

K

LN LN

TESTER

LOCAL USER

Test Architecture

REMOTE USER

Operation Engineering

Picture 18 – Functional Test Setup

In order to generate and monitor all these signals and messages, it is
recommended, following the suggestion of the UML Test Profile form OMG, that
the following components be part of the Test architecture:

• Process Simulator;
• Network Simulator;
• Operator Simulator;
• Test Timer;
• Test Scheduler;
• Test Arbiter.

These components are shown as internal packages of the Test Architecture, in the
following picture.

72

TESTER

Process
Simulator

Network
Simulator

Operator
Simulator

Test
Arbiter

Test
Timer

Test
Scheduler

S.A.S.
<<import>>SCL Files

Picture 19 – Test Package

Note that the Tester package imports the SCL files from the SAS package, to get
access to all logical nodes and network addresses that form the automation
system under test. The following is a description of each package forming the
Tester.

5.8.1 Process Simulator

The Process Simulator is a package of classes to emulate the signals that are
received and sent from and to the process. These include classes to monitor and
send analog, digital and sampled values and messages. The following classes are
suggested as a minimum to form a Process Simulator in the Test Architecture:

• VoltageOutput – class to generate voltage waveforms;
• CurrentOutput – class to generate current waveforms;
• DigitalInput – class to generate digital input waveforms;
• DigitalOutput – class to read digital input waveforms;

Table 10 to Table 13 list suggested attributes and methods of these classes to
support the simulation of a substation process in a test architecture. These classes
and functions will be used to illustrate the test specification in the remaining
chapters.

Table 10 – Class VoltageOutput Specification

VoltageOutput : TestComponent

Attribute Explanation

+ Node Reference to a Logical Node

- File Reference to a Comtrade File

Method Explanation

+ VoltageOutput (Node) : VoltageOutputName Constructor of a voltage output object connected to Node

+ SetVoltageOutputSequence (File) Read a Comtrade File with voltage output for Node

73

+ GetVoltageOutputSequence (Duration) Record voltage output sequence for Duration from Node

+ SetACVoltageOutput (Module, Angle) Set an AC Module & Angle voltage output to Node

+ GetACVoltageOutput () : (Module, Angle) Read current AC Module & Angle voltage output to Node

+ SetDCVoltageOutput (Module) Set a DC Module voltage output to Node

+ GetDCVoltageOutput (Module) Get current DC Module voltage output to Node

+ StartVoltageOutput () : Time Start voltage output (set before) to Node and return Time

+ StopVoltageOutput () : Time Stop voltage output to Node and return Time

Table 11 – Class CurrentOutput Specification

CurrentOutput : TestComponent

Attribute Explanation

+ Node Reference to a Logical Node

- File : Private Reference to a Comtrade File

Method Explanation

+ CurrentOutput (Node) : CurrentOutputName Constructor of a current output object connected to Node

+ SetCurrentOutputSequence (File) Read a Comtrade File with current output for Node

+ GetCurrentOutputSequence (Duration) Record current output sequence for Duration from Node

+ SetACCurrentOutput (Module, Angle) Set an AC Module & Angle current output to Node

+ GetACCurrentOutput () : (Module, Angle) Read current AC Module & Angle current output to Node

+ SetDCCurrentOutput (Module) Set a DC Module current output to Node

+ GetDCCurrentOutput (Module) Set current DC Module current output to Node

+ StartCurrentOutput () : Time Start current output (set before) to Node and return Time

+ StopCurrentOutput () : Time Stop current output to Node and return Time

Table 12 – Class DigitalInput Specification

DigitalInput : TestComponent

Attribute Explanation

+ Node Reference to a Logical Node

- File Reference to a Comtrade File

Method Explanation

+ DigitalIinput (Node) : DigitalInputName Constructor of a digital input object connected to Node

+ GetDigitalIinputSequence (Duration) Record input sequence in File for Duration from Node

+ GetDigitalIinput () : Boolean Read current Boolean input from Node

+ FirstUpInputTransition () :Time Get Time of first positive transition from Node in File

+ FirstDownInputTransition () :Time Get Time of first negative transition from Node in File

+ LastUpInputTransition () :Time Get Time of last positive transition from Node in File

+ LastDownInputTransition () :Time Get Time of last negative transition from Node in File

Table 13 – Class DigitalOuptut Specification

74

DigitalOutput : TestComponent

Attribute Explanation

+Node Reference to a Logical Node

-File Reference to a Comtrade File

Method Explanation

+DigitalOutput (Node) : DigitalOutputName Constructor of a digital output object connected to Node

+ SetDigitalOutputSequence (File) Read a Comtrade File with digital output for Node

+ GetDigitalOutputSequence (Duration) Record digital output sequence for Duration from Node

+ SetDigitalOutput (Boolean) Set a Boolean output to Node

+ GetDigitalOutput () : Boolean Read current Boolean output to Node

+ StartDigitalOutput () : Time Start digital output (set before) to Node and return Time

+ StopDigitalOutput () : Time Stop digital output to Node and return Time

+ FirstUpOutputTransition () :Time Get Time of first positive transition from Node in File

+ FirstDownOutputTransition () :Time Get Time of first negative transition from Node in File

+ LastUpOutputTransition () :Time Get Time of last positive transition from Node in File

+ LastDownOutputTransition () :Time Get Time of last negative transition from Node in File

5.8.2 Network Simulator

The Network Simulator is a package of classes to supervise and generate
network messages related to any logical node. These include methods used to
monitor and send network messages containing sampled and digital values. The
following table is suggested as a minimum specification for the attributes and
methods of a class to model a Network Simulator in the Test Architecture. It will be
used to illustrate the test specification in the remaining chapters.

Table 14 – Class NetworkSimulator Specification

NetworkSimulator : TestComponent

Attribute Explanation

+ Node Reference to a Logical Node

- File Reference to a message File

Method Explanation

+ NetworkSimulator (Node):NetworkSimulatorName Construct a network simulator object connected to Node

+ SetMessageSequence (File) Read a File with network messages to and from Node

+ GetMessageSequence (Duration) Record in File messages for Duration to and from Node

+ RepeatMessageSequence (File,Interval) Read a File at Interval with messages to and from Node

+ StartNetworkSimulator () : Time Start network messages to and from Node & return Time

+ StopNetworkSimulator () : Time Stop network messages to and from Node & return Time

+ FirstPICOMFrom (FromNode,Picom) :Time Get Time of first Picom from FromNode to Node in File

+ LastPICOMFrom (FromNode,Picom) :Time Get Time of last Picom from FromNode to Node in File

75

+ FirstPICOMTo (ToNode,Picom) :Time Get Time of first Picom from Node to ToNode in File

+ LastPICOMTo (ToNode,Picom) :Time Get Time of last Picom from Node to ToNode in File

5.8.3 Operator Simulator

The Operator Simulator is a package of classes to emulate and monitor the
messages received and sent from and to an operator. These should cover text and
messages exchanged by local and remote IHM. The following table is suggested
as a minimum specification for the attributes and methods of a class to model an
Operator Simulator in the Test Architecture. It will be used to illustrate the test
specification in the remaining chapters.

Table 15 – Class Operator Specification

Operator : TestComponent

Attribute Explanation

+ Node Reference to a Logical Node

Method Explanation

+ Operator (Node) : OperatorName Constructor of an operator object at a station in Node

+ OperatorAct (Action) : Verdict Perform and confirm manual Action at staton in Node

+ OperatorConfirm (Action) : Verdict Confirm automatic Action by SAS at station in Node

5.8.4 Test Timer

The Test Timer is a package of classes to support time related operations, such
as real time clocks, timer start and stop, event timing and tagging. It is formed
mainly by a class TestTimer derived from a Timer interface, as defined on UML
Test Profile. Table 16 and Table 17 define a minimum specification of these
classes, to be used to illustrate the test specification in the remaining chapters.

Table 16 – Class TestTimer Specification

TestTimer : Timer

Attribute Explanation

- Time Internal time count

Method Explanation

+ TestTimer () : TestTimerName Constructor of a timer object named TestTimerName

+ Start () Start timer counting

+ Stop () Stop timer counting

+ GetTime () : Time Get current time count

Table 17 – Class Timer Specification

<<interface>> Timer

76

Attribute Explanation

{readOnly} isRunning : Boolean True when the timer is running

Method Explanation

start(expire : Time) Start timer counting

stop() Stop timer counting

read() : Time Get current time count

5.8.5 Test Scheduler

The Test Scheduler is a package of classes to start, stop and sequence the steps
of a functional testing. It is formed mainly by a class TestScheduler derived from a
Scheduler interface, as defined on UML Test Profile. Table 18 and Table 19 define
a minimum specification of these classes, to be used to illustrate the test
specification in the remaining chapters.

Table 18 – Class TestScheduler Specification

TestScheduler : Scheduler

Attribute Explanation

-File Internal SCL File

-Script Internal reference to a test Script

Method Explanation

+ ReadSCL (File) Imports SCL file for Substation Automation System

+ ReadScript (Script) Imports XML Script file for testing

+ StartTestCase (Name) Start running test case named Name

+ Wait (Duration) Stop further script processing for Duration ms

Table 19 – Class Scheduler Specification

<<interface>> Scheduler

Attribute Explanation

Method Explanation

startTestCase()

finishTestCase(t : TestComponent)

createTestComponent(t : TestComponent)

5.8.6 Test Arbiter

The Test Arbiter is a package of classes to avail the results of any test sequence.
It is formed mainly by a class TestArbiter derived from an Arbiter interface, as
defined on UML Test Profile. Table 20 and Table 21 define a minimum

77

specification of these classes, to be used to illustrate the test specification in the
remaining chapters.

Table 20 – Class TestArbiter Specification

TestArbiter : Arbiter

Attribute Explanation

Method Explanation

+ TestArbiter () : TestArbiterName Constructor of an arbiter object named TestArbiterName

+ TestArbiterConfirm (Expression) : Verdict Evaluate and return value of Expression as a Verdict

Table 21 – Class Arbiter Specification

<<interface>> Arbiter

Attribute Explanation

Method Explanation

getVerdict() : Verdict Evaluate a verdict

setVerdict(v : Verdict) Define a verdict

5.9 Conclusions

IEC 61850 peer-to-peer communications based systems require a different
approach and set of tools for proper testing of the individual components of the
systems, as well as the evaluation of the performance of the distributed functions.

This chapter presents the concept of distributed functions based on sampled
analog values and GOOSE messages and describes the components of the
system. The chapter describes the approach to system testing, as well as the
different components of a test system designed to enable the functional testing of
IEC 61850 based functions, including:

 Configuration tool based on the Substation Configuration Language defined
in Part 6 of IEC 61850.

 Simulation tool that generates the current and voltage waveforms
 Virtual Merging Units and IED simulators
 Test Evaluation tool
 Reporting tool

If the tested device has relay outputs as well, their operation will be compared with
the received GOOSE messages to determine if the performance of
communications based solutions is analogous to the hard-wired case.

78

The test system may also retrieve the waveform records from the tested device
and again compare them with the original waveforms from the simulation tool.

The chapter describes the test system architecture for the testing of individual
devices using sampled analog values, as well as protection or recording schemes
that involve multiple devices.

The following chapter will illustrate how to use this architecture to design functional
test cases.

79

6. Functional Test Specification

6.1 Introduction

Once the SAS has been specified, all the requirements defined in the Functional
Requirements Specification (FRS) have been defined, and the capabilities of the
system in the Function Implementation Conformance Statement (FICS) have been
produced, functional tests can be designed. Using the tools defined in the previous
chapter, testing will aim to check and validate the functional specification
described in these documents. Test specification will mainly be directed to
simulate the analogue inputs and digital information sent to the SAS, and to verify
the proper operation of all functions involved in the SAS.

In general terms a test sequence to verify SAS functional requirements is built as
follows:

 Injection of (GOOSE/SMV/MMS/GSSE /Analog/Discrete) messages at ap-
propriate access points of station, bay or process network, simulating the
start events of the function, as defined by IEC 61850-5 module [5].

 Recording of (GOOSE/SMV/MMS/GSSE/ Analog/Discrete) messages at
appropriate access points of station, bay or process networks which attest
the correct execution of the function.

 Evaluation of any functional/performance criteria based on these record-
ings, and comparing with functional requirements

This chapter describes how to construct a functional test specification, using the
test architecture and tools proposed in the previous chapter. The proposed test
architecture allows the specification of tests to be designed and read by a user
and executed by computers. That is, any user test specification that obeys these
rules can be processed by a test tool that follows the suggested architecture. Use
of Extensible Markup Language (XML) as the test script language [25], associated
to a user oriented test template can attain both ends.

6.2 SAS Test Specification

A functional test specification can be divided in seven parts that must be designed
in sequence to verify a functional specification. These sections correspond to the
following sections in a test script:

 Test Specification;
 Test Connections;
 Test Setup;
 Test Start;
 Test Stop;
 Test Disconnection; and
 Test Verdict.

80

These sections can be organized in a class diagram shown on Picture 20. These
classes serve as a base to organize the XML schema of Appendix C.

Test
Script

Test
Connection

Test
Setup

Test
Start

Test
Stop

Test
Disconnection

Test
Verdict

Test
Header

Test
Case

Test
Identification

1 1

1

N N N N N N

Picture 20 – Diagram of the Test Case Components

According to this picture, each Test Case is composed of a Test Identification that
nominates the test case, a Test Header that gives information about the Test
Case, and a Test Script that contains the test steps.

The Test Identification and Test Header can be specified in a table format, or as
comments in a Test Script. The following table shows an example of a possible
format, where each test case is identified by a Code, a Name, a Description, the
Customer, Substation, and the corresponding SCL and FRS files, according to the
template described in Appendix B.

Table 22 – SAS Test Specification

Functional Test Case
Code PDIFF
Name (Transformer) Differential Protection

Description
Protective function that operates on a percentage or phase angle or other
quantitative difference of two currents

Use Case Description
Customer CHESF
Substation Baden 230/132kV
SCL File XMLExmpleSCL.scl
FSR File FSR file
FICS File FICS file

The same information could be inserted in the header of an XML script file,
following the schema of Appendix C:

<?xml version="1.0" encoding="utf-8"?>
<TestCase xmlns="http://tempuri.org/XMLSchema.xsd">
 <Code>PDIF</Code>
 <Name>(Transformer) Differential Protection</Name>
 <Description>
 Protective function that operates on a percentage or phase angle
 or other quantitative difference of two currents
 </Description>
 <Customer>CHESF</Customer>

81

 <Substation>Baden 230/132kV Substation</Substation>
 <SCLFile>Baden.scl, version 2.0</SCLFile>
 <FICSFile>Baden.fics</FICSFile>

In this script, the SCL file should be specified by a universal locator like a place in
network folder or an internet site, in order to be automatically located by the test
computer.

6.3 SAS Functional Test Connections

Before starting the tests it is necessary to identify the function to be tested and the
relation with the other functions of the SAS. The functional specification and the
test requirements described in chapters 2 and 3, provide this information.

Circuit breakers, switches, voltage and current transformers, blocking and trip
signals, commands, oscilographic registers, events, etc can be classified as
Process, network, or operator classes. In addition, there are other modules as
timers, the sequencer, and the arbiter to be taken into account when a function is
to be tested.

The identification of all components involved in the test is followed by the definition
of all connections between these components and the SUT. Such connections
have to be declared at the beginning of the test script so that the Test Tool can
select the modules and connections to perform the test. The specification is built
by calling the constructor of every object needed in the test, which can be
formatted as shown in Table 23.

Table 23 – SAS Test Connection
Test Connection

Step Command Meaning
1 Call test component constructor 1 Create a test component and connect it to SUT
2 Call test component constructor 2 Create a test component and connect it to SUT
N … …

The test components and their connections can be declared as:

 Instantiation of process simulator classes – for each source or
destination of signals exchanged by the SAS with the process an object
should be created, derived from the appropriate class in the process
simulator. These classes model the behavior of primary process
equipments like breakers, potential transformers, current transformers,
power transformers, etc. A current transformer TCTR1 could be modeled,
for example, by the constructor of the class CurrentOutput, in a test script
by the command

Tctr1 = CurrentOutput(TCTR1)

or using an XML script line like

82

<CurrentOutput CurrentOutputName="Tctr1" Node="TCTR1"/>.

 Instantiation of network simulator classes - for each logical node

selected for message injection or monitoring during the test, an object
should be created, derived from the appropriate class in the network
simulator. A differential protection logical node PDIF could be modeled, for
example, by the constructor of the class NetworkSimulator, in a test script
by the command

Pdif = NetworkSimulator(PDIF)

or using an XML script line like

<NetworkSimulator NetworkSimulatorName="Pdif" Node="PDIF"/>.

 Instantiation of operator simulator classes - for each operator node
selected for message injection or monitoring during the test, an object
should be created, derived from the appropriate class in the operator
simulator. An operator connected to human machine interface node IHMI
could be modeled, for example, by the constructor of the class Operator, in
a test script by the command

Operator1 = Operator(IHMI)

or using an XML script line like

<Operator OperatorName="Operator1" Node="IHMI"/>.

 Instantiation of test sequencer class – this class does not need an
explicit instantiation from the user. It is automatically created by the test
instrumentation as a script sequencer.

 Instantiation of test timer class – timers are used to measure or delay the

occurrence of events in a test. A timer named Timer1 can be created by
calling the constructor of class TestTimer, by the command

Timer1 = TestTimer()

or using an XML script line like

<TestTimer TestTimerName="Timer1"/>.

 Instantiation of test arbiter class - for each condition verified during the
test, a message should be directed to the appropriate object created in a
previous step, and derived from the appropriate TestArbiter class. The
constructor for this object can be, for example

Arbiter1 = TestArbiter()

83

or using an XML script line like

<TestArbiter TestArbiterName="Arbiter1"/>.

Using this object, a difference in time between two events Time2 and Time1
could be checked by the command

Verdict1 = Arbiter1->TestArbiterConfirm (Time2-Time1<100)

or using an XML script line like

<TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 >
Time2-Time1" Verdict="Verdict1"/>.

6.4 SAS Functional Test Setup

Test requirements define particular parameters and set points on test components.
Before starting the test some initial conditions have to be defined. Initial position of
circuit breakers and switches, initial values of current and voltage, initial status of
blocking and trip signals, etc. Most of the times SUT has to be set with particular
parameters before performing the test.

For each object needing initialization during the test, a message should be
directed to the appropriate object created in the previous step, and derived from
the appropriate class in the process simulator. These messages can be formatted
as shown in Table 24.

Table 24 – SAS Test Setup
Test Setup

Step Command Meaning
1 Set parameters to test component 1 Prepare test component to apply signal to SUT
2 Set parameters to test component 2 Prepare test component to apply signal to SUT
N … …

To initialize to zero the output current from current transformer Tctr1, for example,
a call to its object function SetCurrentOutput could be included in a test script by
the command

Tctr1->SetACCurrentOutput(0,0)

or using an XML script line like

<SetACCurrentOutput CurrentOutputName="Tctr1" Module="0" Angle="0"/>.

6.5 SAS Functional Test Start

Once all objects are initialized, the setup specification is ready with the
connections and initial conditions of all components specified. Next part of the
script is directed to apply the analogue and digital signals to the SUT taking into

84

account the requirements needed by the test. These can be formatted as shown in
Table 25.

Table 25 – SAS Test Start
Test Start

Step Command Meaning
1 Start test component 1 Apply test component signals to SUT
2 Start test component 2 Apply test component signals to SUT
N … …

All defined objects that need to be started are commanded in this part of the script:

 Start of process simulator objects – Using the process objects created
and initialized previously, the occurrence of events like injection of current
by Tctr1 could be recorded in variable Time1 by the command

Time1=Tctr1->StartCurrentOutput ()

or using an XML script line like

<StartCurrentOutput CurrentOutputName="Tctr1" Time="Time1"/>.

 Start of network simulator objects - Using the network objects created

and initialized previously, the occurrence of events like sending of
messages by Pdiff could be started by the command

Pdiff->StartNetworkSimulator()

or using an XML script line like

<StartNetworkSimulator NetworkSimulatorName="Pdif"/>.

 Start of operator simulator objects - Using the operator objects created

and initialized previously, the occurrence of events like sending of
messages by Operator1 could be started by the command

Operator1->StartOperatorSimulator()

or using an XML script line like

<StartOperatorSimulator OperatorSimulatorName="Operador1"/>.

 Start of test timer object - Using the timer objects created and initialized

previously, the counting of time intervals and events by Timer1 could be
started by the command

Timer1->Start ()
or using an XML script line like

<Start TestTimerName="Timer1"/>.

85

6.6 SAS Functional Test Stop

This section of the specification is mostly related to the previous one. In this part
the test specification defines the conditions to end the test and stop applying
analogue and digital signals to the SUT. These conditions can be specified as
shown in Table 26.

Table 26 – SAS Test Stop
Test Stop

Step Command Meaning
1 Stop test component 1 Suspend test component signals to SUT
2 Stop test component 2 Suspend test component signals to SUT
N … …

The following actions can be necessary to stop a test script:

 Stop of process simulator objects – for each process simulator object
that is generating signals, an appropriate message should be sent to stop
the signal generation. To stop the current signal from Tctr1, the following
commands could be inserted in the script:

Tctr1->SetACCurrentOutput(0)
Tctr1->StartCurrentOutput()

or using an XML script line like

<SetACCurrentOutput CurrentOutputName="Tctr1" Module="0"
Angle="0"/>
<StartCurrentOutput CurrentOutputName="Tctr1" Time=""/>

 Stop of network simulator objects – for each object representing a logical

node for which the test script is sending or recording messages, an
appropriate message should be sent to end it. To stop the recording of
messages coming from the logical node Pdiff, the following command could
be inserted in a script

Pdiff->StopNetworkSimulator()

or using an XML script line like

<StopNetworkSimulator NetworkSimulatorName="Pdif" Time=""/>

It is necessary to remark that SAS Functional Test Start and SAS Functional Test
Stop sections can be included in the specification several times depending on the
type of the test. For example, these sections will be included only once when the
test is performed on an overcurrent unit, while these sections will be included
several times when the recloser is tested.

86

6.7 SAS Functional Test Disconnections

Before closing and disconnecting all test components from SUT the specification
must collect all necessary events, reports, etc. from the components and SUT. It is
assumed that all objects are closed and their resources liberated by the test
sequencer class, as soon as the test script is ended. These actions can be
collected as shown in Table 27.

Table 27 – SAS Test Disconnection
Test Disconnection

Step Command Meaning
1 Log test component 1 results Register results of test component from SUT
2 Log test component 2 results Register results of test component from SUT
N … …

To collect data from each object created, like the instant that the first PICOM type
22 is sent from logical node Pdiff to CSWI1, the following command, for example,
can be inserted in the test script

Time2 = Pdif->FirstPICOMTo(CSWI1,22)

or using an XML script line like

<FirstPICOMTo NetworkSimulatorName="Pdif" ToNode="CSWI1" Picom="22"
Time="Time2"/>.

6.8 SAS Functional Test Verdict

The last section of the script specifies the conditions that should be checked
before the emission of a verdict. A verdict is a pass or fail conclusion about some
results collected from the test. All verdicts can be collected and inserted in a Test
Verdict specification as shown in Table 28.

Table 28 – SAS Test Verdict
Test Verdict

Step Command Meaning
1 Check log results from component 1 Publish test component verdict
2 Check log results from component 2 Publish test component verdict
N … …

As an example, to verify that the first trip signal (PICOM type 22) sent from the
logical node Pdiff after the inception of a fault occur in less than 100ms, the
following command could be inserted in the test script:

Verdict1 = Arbiter1->TestArbiterConfirm(Time2-Time1<100)

or using an XML script line like

<TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 > Time2-
Time1" Verdict="Verdict1"/>.

87

In these commands, Time2 and Time1 are instants of time collected by the test
script in previous steps.

The verdict section will have as many statements as needed to provide the test
tool with the necessary information to determine the correct functioning of the
SUT. In case of failure, this information will be useful for the human tester to
identify the problem in detail.

All these commands will be illustrated in a complete test case example, in the next
chapter.

89

7. Test Case Example

7.1 Introduction

This chapter shows the design of functional and performance tests for a simple
substation automation system, based on the methodology described on previous
chapters. Starting from a transformer bay station layout, a functional specification
is built for an automation system, according to the format proposed on Chapter 2.
An SCL design specification is assumed, as a model of the SAS system for the
station. Performance requirements are also specified for the automation system.

Failure mode and effects analysis (FMEA) and Hazard and Operability Analysis
(HAZOP) are conducted on the example system, following the format of Chapter 4,
to identify failure modes, and to establish test coverage criteria. Finally, both
functional and performance tests are derived, based on these specifications,
formatted in UML diagrams, tables and XML format, according to the test
architecture of Chapter 5, the specification formats of Chapter 6 and the XML
Schema proposed on Appendix C.

It is expected that this example demonstrates the joint application of all proposed
techniques of previous chapters, and suggests similar applications to other SAS
systems.

7.2 Substation Specification

Picture 21 shows a single line diagram of a simple transformer bay in a station. It
is a simplified and modified version of Baden 220/132kV substation example listed
on IEC 61850-6 part. This system will be used in the remaining of this chapter to
illustrate the testing methodology.

90

Picture 21 – Substation Layout Diagram

In this station, transformer T1 has two windings, W1 and W2. W1 is connected to a
220 kV voltage level D1 at bay Q1, through connectivity nodes L1 and L2. Winding
W2 is connected to bay Q2 at 110 kV voltage level E1. There is a current trans-
former at each of the transformer windings.

The 132kV bay E1Q2 contains a circuit breaker QA2 and a bus bar disconnector
QB1, both electrically connected at connectivity node L0, as well as current trans-
former I1 between connectivity nodes L1 and L2.

This diagram or some other graphical representation can be recovered, with ade-
quate software tools, from the substation section of the SCL file included in Ap-
pendice E. The file is a syntactically correct, but not fully completed SCL file for the
example used in this chapter, including the communication section.

7.3 SAS Functional Specification

Suppose that the following functions and performance requirements were defined
by the user, for this bay:

F1 - Trip breaker QA1 in less than 100ms when there is a fault on transformer
T1, and report on operator console;

F2 - Trip breaker QA2 in less than 100ms when there is a fault on transformer
T1, and report on operator console;

F3 - Operate a differential protection in less than 100ms when there is a fault
on transformer T1, and report on operator console.

91

A UML Use Case diagram can be constructed, as part of the above functional
specification, as shown on the following diagram.

PROCESS SAS USERS

F1

F2

F3

Picture 22 – Functional Use Cases

The following table shows the Functional Specification of a proposed SAS, using a
differential protection, formatted as a FICS (Functional Implementation
Conformance Statement) file, as defined on Chapter 2, for the station transformer
bay described on the previous topic, covering functions F1, F2 and F3 above.

Table 29 – Functional Implementation Conformance Statement

Functional Implementation Conformance Statement
Code PDIFF
Name (Transformer) Differential Protection

Description
Protective function that operates on a percentage or
phase angle or other quantitative difference of two
currents

Customer CHESF
Substation Baden 220/132kV Substation
SCL File Baden.scl, version 2.0
Primary User
(Actor)

T1 transformer

Secondary User
(Actor)

Station operator

Stakeholder &
Interest

Operation of this function prevents major damage
on transformer

Extensions None
Function Description

Trigger An internal short circuit on the transformer

Components
or Logical Nodes

XCBR1, XCBR2, PDIF, TCTR1, TCTR2, CSWI1,
CSWI2

92

Process
Equipments

Transformer T1, Breakers BR1 and BR2

Performance
Tripping time of XCBR1 & XCBR2 < 100ms upon
inception of short circuit

Preconditions
Switch SSWI closed, Breakers XCBR1 & XCBR2
closed

Post conditions
on Success

Breakers XCBR1 & XCBR2 open, alarm on operator
console IHMI

Post conditions
on Failure

Breakers XCBR1 or XCBR2 still closed, possible
damage of transformer, opening of remote breakers

Use Case Description
Use Case name MSS

Basic Course Description

1 Transformer Internal short circuit on Transformer

2 XCTR1 or XCTR2 Mismatch between currents

3 PDIF Detect, trip CSWI1 & CSWI2, alarm
IHMI

4 CSWI1 & CSWI2 Send trip to XCBR1 & XCBR2

5 XCBR1 & XCBR2 Trip and respond to CSWI1 & CSWI2

6 CSWI1 & CSWI2 Respond to PDIF and report to IHMI

Extensions
5a Breaker 1 or breaker 2 failure

1 XCBR1 or XCBR2 Activate breaker failure protection

The following table shows the functions related to each logical node, according to
this specification. This table will also be used in the test coverage analysis, to
demonstrate the test effectiveness.

Table 30 – Multiple Uses of Logical Nodes

S.A.S.

LOGICAL NODE

XC
B

R
1

XC
B

R
2

C
SW

I1

C
SW

I2

TC
TR

1

TC
TR

2

PD
IF

IH
M

I

FU
N

C
ITO

N

F1 X X X X X X

F2 X X X X X X

F3 X X X X

To complement the specification, a UML communication diagram can be supplied,
as shown on Picture 23, showing the type of messages exchanged between the
logical nodes, according to the Use Case scenario of an internal short circuit on
the transformer. Note that the exact sequence of messages is not shown as these
are asynchronous events.

93

 Picture 23 – Functional Specification by UML Communication Diagram

A UML sequence diagram can also be used to complement this information, as
shown on Picture 24 for the same scenario. The messages are identified by the
same numbers as shown on Picture 23. Again, the event messages are
asynchronous.

Picture 24 – Functional Specification by UML Sequence Diagram

The numbers that identify the messages in these diagrams correspond to PICOM
(Piece of Information Communication) types, according to Table 31, extracted from
IEC 61850-5 – Annex B, for the logical nodes used on this automation system.
Other message identification methods could be used, as long as they are unique
for each logical node. Just a subset of these messages is used in this example.

Table 31 – PICOM Type and Description
Type Description Range (ms) Type
XCBR (Circuit Breaker)

12 Operated 10 to 1000 Event Spontaneous

94

CSWI (Switch Controller)
21 Command to Switchgear 1 to 1000 Command Spontaneous
12 Operated 10 to 1000 Event Spontaneous

TCTR (Current Transformer)
1 Current/Voltage 10 Value Cyclic

PDIF (Differential Protection)
10 Trip Indication 100 to 1000 Event Spontaneous
22 Trip Command 1 Command Spontaneous

7.4 SAS Design Specification

The design specification of this example contains all project details like node
allocation among IEDs, network address (IP) of each server. The following picture
shows a UML deployment diagram for the SAS of this example, with the allocation
of logical nodes in eight IEDs. Each IED is identified by a label, with corresponding
network address (IP) shown inside each device block. A single network connects
all IEDs.

Picture 25 – Physical Design by UML Deployment Diagram

This SAS system is described in the SCL file in Appendice E. It has been checked
against the IEC 61850 XML schema for SCL, and completely defines the
addresses of each logical node.

7.5 SAS Performance Requirements

A UML sequence diagram can also be used to show the time performance
requirement of each function, as shown on Picture 26. The messages are also
identified by their PICOM numbers.

95

:XCTR1 :XCTR2 :PDI :CSWI1 :CSWI2 :XCBR1 :XCBR2 :IHMI

1

1
22

22
21

21
12

12

12

12

12

10

12

{<
 1

00
m

s
}

{<
 1

0
0

m
s

}

{<
 1

0
0

m
s

}

Picture 26 – Performance Specification as UML Sequence Diagram

Note that timing performance is shown as constraints for external input output
signals, as well as for specific node messages of the SAS. Observe also that the
timing constraint includes the opening of the circuit breaker, a time delay that is
dependent on the operation of devices external to the SAS, measured by the
response time of logical nodes XCBR1 and XCBR2.

7.6 Failure Mode and Effects Analysis

Before designing the tests for this system, it is necessary to perform an FMEA
analysis to identify its possible faults. HAZOP will be used to identify all failure
modes of each node. Network devices can also be analyzed using the same
method, but in this example their defects will be assumed to be reflected on a
logical node failure. Table 32 shows the relationship of HAZOP guide words with
all logical nodes used in this system. Each “X” on this table represents a possible
failure mode of the corresponding logical node.

Table 32 – HAZOP Analysis of Logical Nodes

Guide Word XCBR1 XCBR2 CSWI1 CSWI2 TCTR1 TCTR2 PDIF IHMI

No X X X X X X X X

More X X X

Less X X X

As well as X

Part of X

Reverse X X X

Other than X X X X X X X X

Early X X

Late X X X X X X X

96

Before X X

After X X

To this example, only the failure modes associated to the HAZOP guide word “No”
will be shown on the FMEA matrix (Table 33), as they seem to be sufficient to test
the specified functions. Similar tables can be constructed for the other guide
words, as necessary.

Table 33 – Failure Mode and Effects Analysis

FMEA
LOGICAL NODE

XCBR1 XCBR2 CSWI1 CSWI2 TCTR1 TCTR2 PDIF IHMI FU
N

C
ITO

N

F1 X X X X X X

F2 X X X X X X

F3 X X X X

7.7 SAS Functional Test Specification

Having identified the potential failures of the SAS, it is possible now to design the
tests to detect them. The test specification will describe the setup of the test
components, instantiated from the classes of devices and functions available in
the test architecture, and the test script to be followed, described as method calls
or messages derived from the instantiated classes.

The following Picture 27 shows the testing objects instantiated from the test device
classes, as described on Chapter 5, necessary to test this example SAS. The
picture shows also their connection to the SAS logical nodes, in a UML
communication diagram.

97

 Picture 27 –Test Setup as a UML Communication Diagram

Note that each breaker is modeled by a DigitalOutput and a DigitalInput object, to
simulate their command and response messages, while each current transformer
is modeled by a CurrentOutput object, to simulate their sampled currents. A
network simulator (or analyzer) is instantiated and assigned to monitor the
messages related to logical node PDIF, to measure its response time. Messages
sent and/or received by the operator are modeled by an Operator object.

This setup can be described more fully as a functional test case, in a table format
as described on Chapter 6. Table 34 shows the test case for the three functions
specified in this example SAS.

Table 34 – Functional Test Case

Functional Test Case
Code PDIFF
Name (Transformer) Differential Protection

Description
Protective function that operates on a percentage or phase angle or other
quantitative difference of two currents

Use Case Description
Customer CHESF
Substation Baden 230/132kV
SCL File XMLExmpleSCL.scl
FSR File FSR file
FICS File FICS file

Test Description
Step Command Meaning

Test Connection
1.1 TTiimmeerr11 == TTeessttTTiimmeerr(()) CCrreeaattee aa ttiimmeerr ttoo mmeeaassuurree eevveennttss
1.2 AArrbbiitteerr11 == TTeessttAArrbbiitteerr (()) CCrreeaattee aa tteesstt aarrbbiitteerr ttoo eemmiitt vveerrddiiccttss
1.3 XXccbbrr11__IInn == DDiiggiittaallIInnppuutt ((XXCCBBRR11)) CCrreeaattee aa ddiiggiittaall iinnppuutt ccoonnnneecctteedd ttoo XXCCBBRR11
1.4 XXccbbrr11__OOuutt == DDiiggiittaallOOuuttppuutt ((XXCCBBRR11)) CCrreeaattee aa ddiiggiittaall oouuttppuutt ccoonnnneecctteedd ttoo XXCCBBRR11
1.5 TTccttrr11 == CCuurrrreennttOOuuttppuutt ((TTCCTTRR11)) CCrreeaattee aann aannaalloogg oouuttppuutt ccoonnnneecctteedd ttoo TTCCTTRR11

98

1.6 TTccttrr22 == CCuurrrreennttOOuuttppuutt ((TTCCTTRR22)) CCrreeaattee aann aannaalloogg oouuttppuutt ccoonnnneecctteedd ttoo TTCCTTRR22
1.7 XXccbbrr22__IInn == DDiiggiittaallIInnppuutt ((XXCCBBRR22)) CCrreeaattee aa ddiiggiittaall iinnppuutt ccoonnnneecctteedd ttoo XXCCBBRR22
1.8 XXccbbrr22__OOuutt == DDiiggiittaallOOuuttppuutt ((XXCCBBRR22)) CCrreeaattee aa ddiiggiittaall oouuttppuutt ccoonnnneecctteedd ttoo XXCCBBRR22
1.9 PPddiiff == NNeettwwoorrkkSSiimmuullaattoorr ((PPDDIIFF)) CCrreeaattee aa nneettwwoorrkk ssiimmuullaattoorr lliinnkkeedd ttoo PPDDIIFF
1.10 OOppeerraattoorr11 == OOppeerraattoorr ((IIHHMMII)) CCrreeaattee aann ooppeerraattoorr ccoonnnneecctteedd ttoo IIHHMMII

Test Setup
22..11 XXccbbrr11__OOuutt-->>SSeettDDiiggiittaallOOuuttppuutt ((11)) PPrreeppaarree ttoo cclloossee bbrreeaakkeerr XXCCBBRR11
22..22 XXccbbrr22__OOuutt-->>SSeettDDiiggiittaallOOuuttppuutt ((11)) PPrreeppaarree ttoo cclloossee bbrreeaakkeerr XXCCBBRR22
22..33 XXsswwii__OOuutt-->>SSeettDDiiggiittaallOOuuttppuutt ((11)) PPrreeppaarree ttoo cclloossee sswwiittcchh XXSSWWII
22..44 TTccttrr11-->>SSeettAACCCCuurrrreennttOOuuttppuutt ((00,,00)) PPrreeppaarree ttoo zzeerroo ccuurrrreenntt oonn nnooddee TTCCTTRR11
22..55 TTccttrr22-->>SSeettAACCCCuurrrreennttOOuuttppuutt ((00,,00)) PPrreeppaarree ttoo zzeerroo ccuurrrreenntt oonn nnooddee TTCCTTRR22
22..66 XXccbbrr11__OOuutt-->>SSttaarrttDDiiggiittaallOOuuttppuutt (()) CClloossee bbrreeaakkeerr XXCCBBRR11
22..77 XXccbbrr22__OOuutt-->>SSttaarrttDDiiggiittaallOOuuttppuutt (()) CClloossee bbrreeaakkeerr XXCCBBRR22
22..88 TTccttrr11-->>SSttaarrttCCuurrrreennttOOuuttppuutt (()) ZZeerroo ccuurrrreenntt oonn ttrraannssffoorrmmeerr TTCCTTRR11
22..99 TTccttrr22-->>SSttaarrttCCuurrrreennttOOuuttppuutt (()) ZZeerroo ccuurrrreenntt oonn ttrraannssffoorrmmeerr TTCCTTRR22
22..1100 PPddiiff-->>GGeettMMeessssaaggeeSSeeqquueennccee ((11mmiinn)) RReeccoorrdd mmeessssaaggeess ffoorr 11mmiinn ttoo aanndd ffrroomm PPDDIIFF
22..1111 XXccbbrr11__IInn-->>GGeettDDiiggiittaallIIiinnppuuttSSeeqquueennccee ((11mmiinn)) RReeccoorrdd iinnppuutt sseeqquueennccee ffoorr 11mmiinn ffrroomm XXCCBBRR11
22..1122 XXccbbrr22__IInn-->>GGeettDDiiggiittaallIIiinnppuuttSSeeqquueennccee ((11mmiinn)) RReeccoorrdd iinnppuutt sseeqquueennccee ffoorr 11mmiinn ffrroomm XXCCBBRR22

Test Start
33..11 TTccttrr11-->>SSeettAACCCCuurrrreennttOOuuttppuutt ((55,,00)) PPrreeppaarree 55AA oonn ccuurrrreenntt oonn ttrraannssffoorrmmeerr TTCCTTRR11
33..22 TTiimmeerr11-->>SSttaarrtt (()) SSttaarrtt ttiimmee ttoo mmeeaassuurree ffuunnccttiioonn ddeellaayyss
33..33 PPddiiffff-->>SSttaarrttNNeettwwoorrkkSSiimmuullaattoorr(()) SSttaarrtt rreeccoorrddiinngg mmeessssaaggeess ttoo//ffrroomm PPDDIIFFFF
33..44 TTiimmee11==TTccttrr11-->>SSttaarrttCCuurrrreennttOOuuttppuutt (()) AAppppllyy 55AA ttoo nnooddee TTCCTTRR11 aanndd rreeccoorrdd ttiimmee

Test Stop
44..11 WWaaiitt ((22mmiinn)) WWaaiitt ffoorr 22mmiinn wwiitthhoouutt pprroocceessssiinngg tthhee ssccrriipptt
44..22 TTccttrr11-->>SSeettAACCCCuurrrreennttOOuuttppuutt ((00)) PPrreeppaarree ttoo zzeerroo ccuurrrreenntt oonn nnooddee TTCCTTRR11
44..33 TTccttrr11-->>SSttaarrttCCuurrrreennttOOuuttppuutt (()) ZZeerroo ccuurrrreenntt oonn ttrraannssffoorrmmeerr TTCCTTRR11
44..44 PPddiiffff-->>SSttooppNNeettwwoorrkkSSiimmuullaattoorr(()) SSttoopp rreeccoorrddiinngg mmeessssaaggeess ttoo//ffrroomm PPDDIIFFFF

Test Disconnection
55..11 TTiimmee22 == PPddiiff-->>FFiirrssttPPIICCOOMMTToo ((CCSSWWII11,,2222)) GGeett ttiimmee ooff ffiirrsstt ttrriipp ffrroomm PPDDIIFF ttoo CCSSWWII11
55..22 TTiimmee33 == PPddiiff-->>FFiirrssttPPIICCOOMMTToo ((CCSSWWII22,,2222)) GGeett ttiimmee ooff ffiirrsstt ttrriipp ffrroomm PPDDIIFF ttoo CCSSWWII11
55..33 TTiimmee44 == XXccbbrr11__IInn-->>FFiirrssttDDoowwnnIInnppuuttTTrraannssiittiioonn (()) GGeett ttiimmee ooff ooppeenniinngg ooff bbrreeaakkeerr XXCCBBRR11
55..44 TTiimmee55 == XXccbbrr22__IInn-->>FFiirrssttDDoowwnnIInnppuuttTTrraannssiittiioonn (()) GGeett ttiimmee ooff ooppeenniinngg ooff bbrreeaakkeerr XXCCBBRR22

Test Verdict
66..11 VVeerrddiicctt11 == AArrbbiitteerr11-->>TTeessttAArrbbiitteerrCCoonnffiirrmm ((TTiimmee22--TTiimmee11<<110000)) TTrriipp ooff PPDDIIFF ttoo CCSSWWII<<110000mmss
66..22 VVeerrddiicctt22 == AArrbbiitteerr-->>TTeessttAArrbbiitteerrCCoonnffiirrmm ((TTiimmee33--TTiimmee11<<110000)) TTrriipp ooff PPDDIIFF ttoo CCSSWW22<<110000mmss
66..33 VVeerrddiicctt33 == AArrbbiitteerr-->>TTeessttAArrbbiitteerrCCoonnffiirrmm ((TTiimmee44--TTiimmee11<<110000)) TTrriipp ooff bbrreeaakkeerr XXCCBBRR11<<110000mmss
66..44 VVeerrddiicctt44 == AArrbbiitteerr-->>TTeessttAArrbbiitteerrCCoonnffiirrmm ((TTiimmee55--TTiimmee11<<110000)) TTrriipp ooff bbrreeaakkeerr XXCCBBRR22<<110000mmss
66..55 VVeerrddiicctt55 == OOppeerraattoorr11-->>OOppeerraattoorrCCoonnffiirrmm ((““PPDDIIFF TTrriipp””)) CCoonnffiirrmm PPDDIIFF ttrriipp iinnddiiccaattiioonn
66..66 VVeerrddiicctt66 == OOppeerraattoorr11-->>OOppeerraattoorrCCoonnffiirrmm ((““XXCCBBRR11 TTrriipp””)) CCoonnffiirrmm XXCCBBRR11 ttrriipp iinnddiiccaattiioonn
66..77 VVeerrddiicctt77 == OOppeerraattoorr11-->>OOppeerraattoorrCCoonnffiirrmm ((““XXCCBBRR22 TTrriipp””)) CCoonnffiirrmm XXCCBBRR22 ttrriipp iinnddiiccaattiioonn

Observe that each command in this script is a message or function call to a
method supported by the instantiated class. It is dependent on the object oriented
architecture of the test devices. The last commands evaluate the results of the test
case. The seven verdicts (Verdict1 to Verdict7) check the time performance of the
SAS against the specification (<100ms), as well as the operator notification of
each breaker tripping and differential protection operation.

This same test case can also be specified in XML, using the XML Schema defined
on Appendice C. The schema depends on the same object oriented test
architecture. The following listing details this specification, after being checked
against the schema.

<?xml version="1.0" encoding="utf-8"?>
<TestCase xmlns="http://tempuri.org/XMLSchema.xsd">
 <Code>PDIF</Code>
 <Name>(Transformer) Differential Protection</Name>

99

 <Description>
 Protective function that operates on a percentage or phase angle
 or other quantitative difference of two currents
 </Description>
 <Customer>CHESF</Customer>
 <Substation>Baden 230/132kV Substation</Substation>
 <SCLFile>Baden.scl, version 2.0</SCLFile>
 <FICSFile>Baden.fics</FICSFile>
 <Script>
 <!--===-->
 <!--TEST CONNECTION-->
 <!--===-->
 <TestTimer TestTimerName="Timer1"/>
 <TestArbiter TestArbiterName="Arbiter1"/>
 <DigitalInput DigitalInputName="Xcbr1_In" Node="XCBR1"/>
 <DigitalOutput DigitalOutputName="Xcbr1_Out" Node="XCBR1"/>
 <CurrentOutput CurrentOutputName="Tctr1" Node="TCTR1"/>
 <CurrentOutput CurrentOutputName="Tctr2" Node="TCTR2"/>
 <DigitalInput DigitalInputName="Xcbr2_In" Node="XCBR2"/>
 <DigitalOutput DigitalOutputName="Xcbr2_Out" Node="XCBR2"/>
 <NetworkSimulator NetworkSimulatorName="Pdif" Node="PDIF"/>
 <Operator OperatorName="Operator1" Node="IHMI"/>
 <!--===-->
 <!--TEST SETUP-->
 <!--===-->
 <SetDigitalOutput DigitalOutputName="Xcbr1_Out" Boolean="true"/>
 <SetDigitalOutput DigitalOutputName="Xcbr2_Out" Boolean="true"/>
 <SetACCurrentOutput CurrentOutputName="Tctr1" Module="0" Angle="0"/>
 <SetACCurrentOutput CurrentOutputName="Tctr2" Module="0" Angle="0"/>
 <StartDigitalOutput DigitalOutputName="Xcbr1_Out" Time=""/>
 <StartDigitalOutput DigitalOutputName="Xcbr2_Out" Time=""/>
 <StartCurrentOutput CurrentOutputName="Tctr1" Time=""/>
 <StartCurrentOutput CurrentOutputName="Tctr2" Time=""/>
 <GetMessageSequence NetworkSimulatorName="Pdif" Duration="P1M"/>
 <GetDigitalIinputSequence DigitalInputName="Xcbr1_In" Dura-
tion="P1M"/>
 <GetDigitalIinputSequence DigitalInputName="Xcbr2_In" Dura-
tion="P1M"/>
 <!--===-->
 <!--TEST START-->
 <!--===-->
 <SetACCurrentOutput CurrentOutputName="Tctr1" Module="5" Angle="0"/>
 <Start TestTimerName="Timer1"/>
 <StartNetworkSimulator NetworkSimulatorName="Pdif"/>
 <StartCurrentOutput CurrentOutputName="Tctr1" Time="Time1"/>
 <!--===-->
 <!--TEST STOP-->
 <!--===-->
 <Wait Duration="P2M"/>
 <SetACCurrentOutput CurrentOutputName="Tctr1" Module="0" Angle="0"/>
 <StartCurrentOutput CurrentOutputName="Tctr1" Time=""/>
 <StopNetworkSimulator NetworkSimulatorName="Pdif" Time=""/>
 <!--===-->
 <!--TEST DISCONNECTION-->
 <!--===-->
 <FirstPICOMTo NetworkSimulatorName="Pdif" ToNode="CSWI1" Picom="22"
Time="Time2"/>
 <FirstPICOMTo NetworkSimulatorName="Pdif" ToNode="CSWI2" Picom="22"
Time="Time3"/>

100

 <FirstDownInputTransition DigitalInputName="Xcbr1_In" Time="Time4"/>
 <FirstDownInputTransition DigitalInputName="Xcbr2_In" Time="Time5"/>
 <!--===-->
 <!--TEST VERDICT-->
 <!--===-->
 <TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 >
Time2-Time1" Verdict="Verdict1"/>
 <TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 >
Time3-Time1" Verdict="Verdict2"/>
 <TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 >
Time4-Time1" Verdict="Verdict3"/>
 <TestArbiterConfirm TestArbiterName="Arbiter1" Expression="100 >
Time5-Time1" Verdict="Verdict4"/>
 <OperatorConfirm OperatorName="Operator1" Action="PDIF Trip" Ver-
dict="Verdict5"/>
 <OperatorConfirm OperatorName="Operator1" Action="XCBR1 Trip" Ver-
dict="Verdict6"/>
 <OperatorConfirm OperatorName="Operator1" Action="XCBR2 Trip" Ver-
dict="Verdict7"/>
 </Script>
</TestCase>

7.8 Test Coverage

To verify the test coverage of this test case, Table 35 expands the FMEA analysis
of Table 33 to include the failure nodes of every logical node covered by this test
case, related to HAZOP guide word “No”. Note that, with exception of node XSWI,
not related to functions F1, F2 and F3, all failure modes of the other logical nodes
are tested by this test case.

Table 35 – Test Coverage Analysis for HAZOP Guide Word No

FMEA
LOGICAL NODE

XCBR1 XCBR2 CSWI1 CSWI2 TCTR1 TCTR2 PDIF IHMI FU
N

C
ITO

N

F1 X X X X X X

F2 X X X X X X

F3 X X X X

TEST COVERAGE X X X X X X X X

TEST C
A

SE

T1 X

T2 X

T3 X X X X X

T4 X X X X X

T5 X X X X

T6 X X X X X X

T7 X X X X X X

More detailed test coverage could be achieved using all the failures generated by
all HAZOP guide words, as seen on Table 36. It can be seen that all failure modes

101

identified by letter “X” are possible failures not covered by this test case. Failures
identified by the word “OK” are covered by the test case. This should help the test
designer to decide on the need of further testing of this system.

Table 36 – Test Coverage Analysis for all HAZOP Guide Words

Guide Word XCBR1 XCBR2 CSWI1 CSWI2 TCTR1 TCTR2 PDIF IHMI

No OK OK OK OK OK OK OK OK

More X X X

Less X X X

As well as X

Part of OK

Reverse X X X

Other than OK OK OK OK OK OK OK OK

Early X X

Late OK OK X X X X OK

Before X X

After X X

103

8. Conclusions

8.1 FMEA and HAZOP ensures adequate test coverage

To highlight the conclusions of this work a Systems Dynamics Model is used to
visualize the interaction of contributions to system test specification. As illustrated
below, a simple example is used to show how the procedure recommended in this
brochure offers the possibility to minimize the number of misconfigurations that
degrade protection function operation.

Picture 28 – Interactions of Contributions to System Test Specification

A well defined protection scheme must be described by the utility protection
engineer. Such a scheme defines the number of protection functions to be
implemented. Each protection function requires proper setting of the protection
configuration parameters which is strongly influenced by the efficiency of setting
these parameters using quality system configuration tools. Because of the need
for protection configuration assurance, IEC 61850 defines the requirements for a
system configuration language to be used by these tools. These contributions are
shown in the lower causal loop shown in the figure above.

The counterclockwise upper causal loop integrates the recommendations of this
brochure to minimize the number of misconfigurations. Based on FMEA defined
faults, the potential for misconfiguration is translated into protection function
misoperation. Using the HAZOP tables described in Chapter 7, test coverage
should be improved. In turn, the need for protection configuration assurance is
enhanced and the upper loop is closed by applying the FMEA and HAZOP
analysis.

104

When system tests are run, GOOSE state change will result in changes to the
operating parameters of the protection system. The results of these tests provide
the means to measure the sensitivity of protection system operating reliability to
the settings selected for the protection functions.

8.2 System configuration tools are the key to success

System configuration tools are the key to successful system test planning,
execution and evaluation. Chapter 5 provides several examples of how these tools
are used to. Automation of the test processes are needed to minimize labor
intensive tasks and perform the tests in a timely manner. This is best illustrated in
the figure below.

Picture 29 – System Configuration Tools

IEC 61850 system configuration tools and IED configuration tools are used to
generate the Substation Configuration Description (SCD) file and Configured IED
Description (CID) file respectively. Both files are needed by the standard test
configuration tool proposed by WG B5.32 in this brochure.

8.3 UML provides the ability to manage system level complexity

To manage system level complexity, the functional testing should be viewed as
“black-box” testing. That is the System Under Test (SUT) is characterized as
inputs, outputs and the behavior of the transfer function of the SUT. The inputs,
including the environment, are the test stimulus and the outputs are used to
measure the correctness of the transfer function. WG B5.32 found that the best
approach to understand the complexity of 61850 system functionality is use the
Unified Modeling Language (UML). UML class diagrams and transaction
sequences should be derived from the functional decomposition of the protection
and automation functions under consideration.

105

WG B5.32 recommends using the eXtensible Markup Language (XML) to
automate test specification checklist and the system functional test setup. Several
examples are included to show how this approach is applied. Table forms of
FMEA and HAZOP are incorporated in these examples.

8.4 Test specification template is the formal checklist

Although many test specification templates are available, a tailored template is
needed to provide automated (machine readable) integration of IEC 61850
configuration tool outputs. For this reason, WG B5.32 designed a test specification
template to be used as a formal checklist to address all features of the system test
planning, execution and evaluation. Particular attention was given to tailoring the
following fields.

 Each test case contains a unique identifier to track all inputs to the test
specification.

 Definitions, acronyms and abbreviations are matched to IEC 61850
nomenclature.

 Test items are matched to the tools described in Chapter 5.
 Features to be tested and pass/fail criteria are matched to the output of

FMEA and HAZOP describing what is tested and what is not tested.

8.5 Next steps for future CIGRE SC B5 research

Because SC B5 wanted first to address the basic technical approach to system
level functional testing, the scope of WG B5.32 work was intentionally narrow.
Technical issues and other system level functional test methods which exceeded
the scope of this work provide the recommendations for future CIGRE SC B5
research. Listed below is a summary of the recommended research initiatives.

 Develop functional specifications for typical functions based on the
templates provided in this brochure.

o Develop example implementations in SCL for each case.
o Develop functional test script in XML for each case.

 Propose to IEC TC57 WG10 to standardize the templates and XML for
system level testing.

107

Appendice A. Functional Specification Template

<The following template is provided for use with IEC 61850 based functional
specification, suggested to be included in procurement or test specification for
Substation Automation Systems. Text enclosed in square brackets is included to
provide guidance to the functional specification author and should be substituted
by normal text before publishing the document>

A.1 Revision History

<The following table should register the main revision of this document >

Table 37 – Functional Use Case Revision History

Date Version Description Author
<dd/mmm/yy> <x.x> <details> <name>

A.2 Introduction

[The introduction of the Functional Requirements Specification (FRS) provides an
overview of the entire FRS. It includes the purpose, scope, definitions, acronyms,
abbreviations, references, and overview of the FRS.]

[Note: The FRS document captures the complete functional requirements for a
Substation Automation System, or a portion of it. Following is a typical FRS outline
for a project using UML Use Case modeling.

Purpose

[Specify the purpose of this FRS. The FRS fully describes the external behavior of
the application or subsystem identified. It also may describe nonfunctional
requirements, design constraints, and other factors necessary to provide a
complete and comprehensive description of the functional requirements for the
Substation Automation System.]

Scope

[A brief description of the SAS application that the FRS applies to, the feature or
other subsystem grouping, what Use-Case model(s) it is associated with, and
anything else that is affected or influenced by this document.]

Definitions, Acronyms, and Abbreviations

108

[This subsection provides the definitions of all terms, acronyms, and abbreviations
required to properly interpret the FRS. This information may be provided by
reference to a project’s Glossary.]

References

[This subsection provides a complete list of all documents referenced elsewhere in
the FRS. Identify each document by title, report number if applicable, date, and
publishing organization. Specify the sources from which the references can be
obtained. This information may be provided by reference to an appendix or to
another document.]

Overview

[This subsection describes what the rest of the FRS contains and explains how the
document is organized.]

A.3 Overall Description

[This section of the FRS describes the general factors that affect the SAS and its
requirements. This section does not state specific requirements. Instead, it
provides a background for those requirements, which are defined in detail in
Section 3, and makes them easier to understand. Include such items as:

 project perspective
 project functions
 user characteristics
 constraints
 assumptions and dependencies
 requirements subsets].

A.4 Functional Requirements

[This section of the FRS contains all functional requirements to a level of detail
sufficient to enable (designers to design a SAS to satisfy those requirements, and)
testers to test that the system satisfies those requirements.]

[For many applications, this may constitute the bulk of the FRS package and
thought should be given to the organization of this section. This section is typically
organized by function types like protection, supervision, interlocking, etc.

Where application development tools, such as requirements tools, modeling tools,
and the like, are employed to capture the functionality, this section of the
document would refer to the availability of that data, indicating the location and
name of the tool used to capture the data.

Typically, the requirement would contain the following items, for each function:

 <Inputs of SAS functions – where signals come from>

109

 <Outputs of SAS functions – where signals go to>
 <Exceptions of SAS functions – what if it happens>
 <Processing of SAS functions – which nodes transform signals>
 <UML Object Diagram of Logical Nodes – may be provided in the FICS>
 <UML Messages (PICOM) among Objects – annotated on the diagram>

[The following picture shows a UML object communication diagram showing the
logical nodes, PICOM types and messages exchanged in a typical SAS function]

LN2

LN3

LN5

LN1

LN4

command-position

current

current

command-position

position

LN6

sampled current

sampled current

LN8alarm

LN10

LN7

command-response

com
m

and-response

co
m

m
an

d-
re

sp
on

se
command-response

response

trip-position
postion-trip

command-display

SAS

21

21

12

12

1

1

16

21

12

12

21

10

22

22

12

12

Picture 30 – UML Communication Diagram

 [The system’s performance characteristics are also outlined in this section,
associated to each function, like:

 Response time for a transaction (trip, alarm, etc.) (average, maximum)
 Throughput, for example, transactions or messages per second
 Capacity, for example, the number of transactions (alarms, messages, etc)

the system can accommodate
 Degradation modes (what is the acceptable mode of operation when the

system has been degraded in some manner (like loss of a switch, etc)
 Resource utilization, such as memory, disk, communications, and so forth,

as applicable.

Vendors and system integrators are expected to supply a FICS – Function
Implementation Conformance Statement – that summarizes the functional
capabilities of the system or device to be tested, and a detailed object model
supported by the product;

110

 [FICS and functional requirements can be expressed in a typical UML Use Case,
according to the following model, for each specified function]

Table 38 – Functional Use Case Template

Functional Implementation Conformance Statement
Code Short distinctive name of the function from the SAS
Name Phrase that declares the main objective of the function
Description Longer description or summary of the function objective
Customer Identification of owner or integrator of substation
Substation Identification of substation
SCL File Substation configuration language file and version, if available
Primary User (Actor) Role name or description of the primary functional actor/user of the use case

among people, system, etc. (ex. Operation, Engineering, Process, Dispatch)
Secondary User (Actor) Role name or description of the secondary functional actor/user of the use

case among people, system, etc. (ex. Operation, Engineering, Process, Dis-
patch)

Stakeholder & Interest Name of the stakeholder and interest of the stakeholder in the use case

Function Description
Trigger Which action(s)/event(s) of the primary/secondary users initiate the use case
Components or Logical
Nodes

(Codes of) Component(s) architecture or Logical Node(s) that implement or
realize the function or use case, taken from the SCL file, if available

Process Equipments (Codes of) Associated substation process equipments, affected by the function
Performance Goal or quantification of function objective (Ex. execution time, records accura-

cy, etc.)
Preconditions Expected state of the automation system, substation or its environment before

the use case may be applied (Ex. Closed breakers, switches, etc.)
Post conditions on Suc-
cess

Expected state of the automation system, substation or its environment after
successful completion the use case (Ex. Tripped breakers, alarms, recordings,
etc.)

Post conditions on Fail-
ure

Expected state of the automation system, substation or its environment after
unsuccessful completion the use case (Ex. Breaker failure, etc.)

Use Case Description

Basic Course Descrip-
tion

Flow of events performed during normal state
1 Actor Event, step or condition of successful execution
2 System Event, step or condition of successful execution
...
N System Event, step or condition of successful execution

Extensions

Alternative flow of events performed during normal state
1 Actor Event, step or condition of successful execution
2 System Event, step or condition of successful execution
...
N System Event, step or condition of successful execution

111

Appendice B. Functional Test Specification Template

<The following template is provided for use with IEC 61850 based functional test
specification. Text enclosed in square brackets is included to provide guidance to
the functional test specification author and should be substituted by normal text
before publishing the document>

B.1 Revision History

<The following table should register the main revision of this document >

 Table 39 – Functional Test Specification Revision History

Date Version Description Author
<dd/mmm/yy> <x.x> <details> <name>

B.2 Introduction

[The introduction of the Functional Test Specification (FTS) provides an overview
of the entire FTS. It includes the purpose, scope, definitions, acronyms,
abbreviations, references, and overview of the FTS.]

[Note: The FTS document captures the complete functional test specification for a
Substation Automation System, or a portion of it, using UML Testing Profile and
object oriented testing techniques.

Purpose

[Specify the purpose of this FTS. The FTS fully describes the external testing of
the application or subsystem identified by a corresponding FRS (Functional
Requirement Specification) or FICS (Functional Implementation Conformance
Statement). It also may describe nonfunctional test requirements, design
constraints, and other factors necessary to provide a complete and comprehensive
testing of the functions of the Substation Automation System.]

Scope

[A brief description of the SAS application and its FRS/FICS, that the FTS applies
to, the feature or other subsystem grouping, what Use-Case model(s) it is
associated with, and anything else that is affected or influenced by this document.
Explicit mention should be made of the exclusion of conformance and
interoperability tests, and other environmental tests, as applicable]

Definitions, Acronyms, and Abbreviations

112

[This subsection provides the definitions of all terms, acronyms, and abbreviations
required to properly interpret the FTS. This information may be provided by
reference to a project’s Glossary, and to this Cigré document.]

References

[This subsection provides a complete list of all documents referenced elsewhere in
the FTS, specially the FRS that it applies to. Identify each document by title, report
number if applicable, date, and publishing organization. Specify the sources from
which the references can be obtained. This information may be provided by
reference to an appendix or to another document.]

Overview

[This subsection describes what the rest of the FTS contains and explains how the
document is organized.]

B.3 Overall Description

[This section of the FTS describes the general factors that affect the SAS testing
and its requirements. This section does not state specific test requirements.
Instead, it provides a background for those requirements, which are defined in
detail in Section 3, and makes them easier to understand. Include such items as:

 project perspective
 project functions
 user characteristics
 constraints
 assumptions and dependencies
 requirements subsets]

B.4 Functional Test Specifications

[This section of the FTS contains all functional test specifications to a level of
detail sufficient to enable testers to test a SAS to satisfy a specific FRS/FICS.]

[For many applications, this may constitute the bulk of the FTS package and
thought should be given to the organization of this section. This section is typically
organized following the FRS/FICS, by function types like protection, supervision,
interlocking, etc.

Where testing development tools, such as simulator tools, modeling tools, and the
like, are employed to capture test functionality, this section of the document would
refer to the availability of that data, indicating the location and name of the tool
used to capture the data.

113

<Typically, the test specification would contain the following items, for each tested
function:>

 <Processing of SAS functions – which nodes transform signals>
 <UML Object Diagram of Logical Nodes – may be provided in the FICS>
 <UML Messages (PICOM) among Objects – annotated on the diagram>
 <Test script containing a:

o Test Connection – Create all test components and connect to SUT
o Test Setup – Define all parameters and set points of test components
o Test Start – Apply signals to SUT
o Test Stop – Suspend signals to SUT
o Test Disconnection – Close test components and evaluate statistics
o Test Verdict – Emit result of test case

[Vendors and system integrators are expected to supply a FICS – Function
Implementation Conformance Statement – that summarizes the functional
capabilities of the system or device to be tested, and a detailed object model
supported by the product;]

[Functional test specifications can be expressed in a table, according to the
following model, for each tested function]

Table 40 – Functional Test Case Template

Functional Test Case
Code Short distinctive name of the function from the SAS
Name Phrase that declares the main objective of the function
Description Longer description or summary of the function objective and its test

Use Case Description
Customer Identification of owner or integrator of substation
Substation Identification of substation
SCL File Substation configuration language file and version, if available
FSR File Functional Specification Requirement file and version
FICS File Function Implementation Conformance Statement by SAS vendor or supplier

Test Description
Step Command Meaning

Test Connection
1 Call test component constructor 1 Create a test component and connect it to SUT
2 Call test component constructor 2 Create a test component and connect it to SUT
N … …

Test Setup
1 Set parameters to test component 1 Prepare test component to apply signal to SUT
2 Set parameters to test component 2 Prepare test component to apply signal to SUT
N … …

Test Start
1 Start test component 1 Apply test component signals to SUT
2 Start test component 2 Apply test component signals to SUT
N … …

Test Stop
1 Stop test component 1 Suspend test component signals to SUT
2 Stop test component 2 Suspend test component signals to SUT
N … …

Test Disconnection
1 Log test component 1 results Register results of test component from SUT
2 Log test component 2 results Register results of test component from SUT

114

N … …
Test Verdict

1 Check log results from component 1 Publish test component verdict
2 Check log results from component 2 Publish test component verdict
N … …

B.5 Test Coverage

[This section of the FTS contains a demonstration of test coverage of failure
modes and functional failures.]

[The section is typically organized following the FRS, by function types like
protection, supervision, interlocking, etc., but can also condense the coverage of a
whole test suite with several test cases.]

[Functional test coverage can be expressed in a series of tables, according to the
following models, for each tested function.

[HAZOP (Hazard and Operability Analysis), following IEC 61882 standard, is
suggested as a systematic mean of description of failure modes. A table for one or
several logical nodes can resume the meaning of each HAZOP guide word as
applied to their status, measuring, control and setting functions.]

Table 41 – HAZOP Guide Word Meaning for Logical Nodes

Guide Word Status Measures Controls Settings
No
More
Less
As well as
Part of
Reverse
Other than
Early
Late
Before
After

[Or a summary table to condense the failure modes of all Logical Nodes involved
in one or several functions to be tested, if the meaning of each failure mode is
evident from the guide word].

Table 42 – Logical Nodes Failure Modes

Guide Word LN1 LN2 … LNn
No …
More X … X
Less … X
As well as X …

115

Part of …
Reverse X X …
Other than … X
Early X X …
Late X …
Before X … X
After X … X

[Finally, a coverage table detailing the failure modes tested by one or several test
cases, signaled on the previous table by the label OK, can be included to
demonstrate the test coverage.]

Table 43 – Functional Test Coverage

Guide Word LN1 LN2 … LNn
No …
More OK … X
Less … X
As well as X …
Part of …
Reverse X OK …
Other than … OK
Early X X …
Late OK …
Before X … X
After X … X

[Test coverage can also be shown for a whole test suite, for all functional failure
and failure modes tested in an FMEA summary table.]

Table 44 – FMEA Test Coverage

FMEA
FAILURE MODE

M1 M2 M3 ... Mn

F
U

N
C

T
IO

N
A

L
F

A
IL

U
R

E

F1 X ...

F2 X ... X

F3 X ...
... X X ... X

Fm ...

COVERAGE X X X

T
E

S
T

C

A
S

E

T1 ...
T2 X X ... X
T3 ...

... X ...

Tm X ... X

117

Appendice C. XML Schema for Functional Test

C.1 Introduction

The following XML Schema is provided for use with IEC 61850 based functional test
design, in procurement or test specification processes.

C.2 Revision History

Table 45 – Functional XMLTest Revision History

Date Version Description Author
02/16/2007 1.0 First Meeting of Cigré Task Force B5.92 Cigré TF B5.92

C.3 Purpose

This XML Schema defines the syntax rules for designing functional tests of IEC
61850 based systems, according to the test architecture described in this brochure. It
does not describe nonfunctional test requirements, conformance and interoperability
tests, design constraints, and other factors necessary to provide a complete and
comprehensive testing of the functions of a Substation Automation System.

C.4 Schema Organization

The main classes of the test architecture and their methods are defined, and
identified by comments on the XML Schema. Each possible method is also defined
as an XML element, with attributes according to the parameters defined for the
corresponding method of the class of the test architecture. A complete example of
the use of this schema is included on Chapter 7.

C.5 XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
 elementFormDefault="qualified"
 xmlns="http://tempuri.org/XMLSchema.xsd"
 xmlns:mstns="http://tempuri.org/XMLSchema.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!--===-->
 <!--Possible Test Case results, from UML Test Profile-->
 <!--===-->
 <xs:simpleType name="verdict">
 <xs:restriction base="xs:NCName">
 <xs:enumeration value="pass"/> <!--The system under test adheres to
the expectations-->

118

 <xs:enumeration value="fail"/> <!--The system under test differs from
the expectation-->
 <xs:enumeration value="inconclusive"/> <!--The evaluation cannot be
evaluated to be pass or fail-->
 <xs:enumeration value="error"/> <!--An error has occurred within the
testing environment-->
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="TestCase">
 <xs:complexType>
 <xs:sequence>
 <!--===-->
 <!--Test Case Identificacion-->
 <!--===-->
 <xs:element name="Code" type="xs:string" />
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Description" type="xs:string" />
 <xs:element name="Customer" type="xs:string" />
 <xs:element name="Substation" type="xs:string" />
 <xs:element name="SCLFile" type="xs:string" />
 <xs:element name="FICSFile" type="xs:string" />
 <xs:element name="Script">
 <!--===-->
 <!--Test Case Script-->
 <!--===-->
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <!--==-->
 <!--Digital Output Simulator-->
 <!--==-->
 <!--Constructor of a digital output DigitalOutputName
connected to Node -->
 <xs:element name="DigitalOutput">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Read a Comtrade File with digital output for Node -->
 <xs:element name="SetDigitalOutputSequence">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="File" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Record digital output sequence for Duration from Node -->
 <xs:element name="GetDigitalOutputSequence">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Set a Boolean output to Node -->
 <xs:element name="SetDigitalOutput">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Boolean" type="xs:boolean" />
 </xs:complexType>
 </xs:element>

119

 <!--Read current Boolean output to Node -->
 <xs:element name="GetDigitalOutput">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Boolean" type="xs:boolean" />
 </xs:complexType>
 </xs:element>
 <!--Start digital output (set before) to Node and return Time
-->
 <xs:element name="StartDigitalOutput">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--Stop digital output to Node and return Time -->
 <xs:element name="StopDigitalOutput">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first positive transition from Node in File -
->
 <xs:element name="FirstUpOutputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first negative transition from Node in File -
->
 <xs:element name="FirstDownOutputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last positive transition from Node in File --
>
 <xs:element name="LastUpOutputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last negative transition from Node in File --
>
 <xs:element name="LastDownOutputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Digital Input Simulator-->
 <!--==-->
 <!--Constructor of a digital input DigitalInputName connected
to Node -->

120

 <xs:element name="DigitalInput">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Record input sequence in File for Duration from Node -->
 <xs:element name="GetDigitalIinputSequence">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Read current Boolean input from Node -->
 <xs:element name="GetDigitalInput">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Boolean" type="xs:boolean" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first positive transition from Node in File -
->
 <xs:element name="FirstUpInputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first negative transition from Node in File -
->
 <xs:element name="FirstDownInputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last positive transition from Node in File --
>
 <xs:element name="LastUpInputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last negative transition from Node in File --
>
 <xs:element name="LastDownInputTransition">
 <xs:complexType>
 <xs:attribute name="DigitalInputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Voltage Output Simulator-->
 <!--==-->
 <!--Constructor of a voltage output object connected to Node
-->
 <xs:element name="VoltageOutput">
 <xs:complexType>

121

 <xs:attribute name="VoltageOutputName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Read a Comtrade File with Voltage output for Node -->
 <xs:element name="SetVoltageOutputSequence">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="File" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Record Voltage output sequence for Duration from Node -->
 <xs:element name="GetVoltageOutputSequence">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Set an AC Phasor voltage output to Node -->
 <xs:element name="SetACVoltageOutput">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 <xs:attribute name="Angle" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Read current AC Phasor voltage output to Node -->
 <xs:element name="GetACVoltageOutput">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 <xs:attribute name="Angle" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Set a DC Module voltage output to Node -->
 <xs:element name="SetDCVoltageOutput">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Get current DC Module voltage output to Node -->
 <xs:element name="GetDCVoltageOutput">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Start voltage output (set before) to Node and return Time
-->
 <xs:element name="StartVoltageOutput">
 <xs:complexType>
 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--Stop voltage output to Node and return Time -->
 <xs:element name="StopVoltageOutput">
 <xs:complexType>

122

 <xs:attribute name="VoltageOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Current Output Simulator-->
 <!--==-->
 <!--Constructor of a Current output object connected to Node
-->
 <xs:element name="CurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Read a Comtrade File with Current output for Node -->
 <xs:element name="SetCurrentOutputSequence">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="File" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Record Current output sequence for Duration from Node -->
 <xs:element name="GetCurrentOutputSequence">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Set an AC Phasor Current output to Node -->
 <xs:element name="SetACCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 <xs:attribute name="Angle" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Read current AC Phasor Current output to Node -->
 <xs:element name="GetACCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 <xs:attribute name="Angle" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Set a DC Module Current output to Node -->
 <xs:element name="SetDCCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 </xs:complexType>
 </xs:element>
 <!--Get current DC Module Current output to Node -->
 <xs:element name="GetDCCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Module" type="xs:float" />
 </xs:complexType>
 </xs:element>

123

 <!--Start Current output (set before) to Node and return Time
-->
 <xs:element name="StartCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Stop Current output to Node and return Time -->
 <xs:element name="StopCurrentOutput">
 <xs:complexType>
 <xs:attribute name="CurrentOutputName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Network Simulator-->
 <!--==-->
 <!--Construct a network simulator object connected to Node --
>
 <xs:element name="NetworkSimulator">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Read a File with network messages to and from Node -->
 <xs:element name="SetMessageSequence">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="File" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Record in File messages for Duration to and from Node -->
 <xs:element name="GetMessageSequence">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Read a File at Interval with messages to and from Node --
>
 <xs:element name="RepeatMessageSequence ">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="File" type="xs:string" />
 <xs:attribute name="Interval" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 <!--Start network messages to and from Node & return Time -->
 <xs:element name="StartNetworkSimulator">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>

124

 </xs:element>
 <!--Stop network messages to and from Node & return Time -->
 <xs:element name="StopNetworkSimulator">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="Time" type="xs:time" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first Picom from FromNode to Node in File -->
 <xs:element name="FirstPICOMFrom ">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="FromNode" type="xs:string" />
 <xs:attribute name="Picom" type="xs:string" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last Picom from FromNode to Node in File -->
 <xs:element name="LastPICOMFrom">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="FromNode" type="xs:string" />
 <xs:attribute name="Picom" type="xs:string" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of first Picom from Node to ToNode in File -->
 <xs:element name="FirstPICOMTo">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="ToNode" type="xs:string" />
 <xs:attribute name="Picom" type="xs:string" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Get Time of last Picom from Node to ToNode in File -->
 <xs:element name="LastPICOMTo">
 <xs:complexType>
 <xs:attribute name="NetworkSimulatorName" type="xs:IDREF"
/>
 <xs:attribute name="ToNode" type="xs:string" />
 <xs:attribute name="Picom" type="xs:string" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--===-->
 <!--Operator Simulator-->
 <!--==-->
 <!--Constructor of an operator object at a station in Node --
>
 <xs:element name="Operator">
 <xs:complexType>
 <xs:attribute name="OperatorName" type="xs:ID" />
 <xs:attribute name="Node" type="xs:string" />
 </xs:complexType>

125

 </xs:element>
 <!--Perform and confirm manual Action at staton in Node -->
 <xs:element name="OperatorAct">
 <xs:complexType>
 <xs:attribute name="OperatorName" type="xs:IDREF" />
 <xs:attribute name="Action" type="xs:string" />
 <xs:attribute name="Verdict" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Confirm automatic Action by SAS at station in Node -->
 <xs:element name="OperatorConfirm">
 <xs:complexType>
 <xs:attribute name="OperatorName" type="xs:IDREF" />
 <xs:attribute name="Action" type="xs:string" />
 <xs:attribute name="Verdict" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Test Arbiter-->
 <!--==-->
 <!--Constructor of an arbiter object named TestArbiterName --
>
 <xs:element name="TestArbiter">
 <xs:complexType>
 <xs:attribute name="TestArbiterName" type="xs:ID" />
 </xs:complexType>
 </xs:element>
 <!--Evaluate and return value of Expression as a Verdict -->
 <xs:element name="TestArbiterConfirm">
 <xs:complexType>
 <xs:attribute name="TestArbiterName" type="xs:IDREF" />
 <xs:attribute name="Expression" type="xs:string" />
 <xs:attribute name="Verdict" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Test Timer-->
 <!--==-->
 <!--Constructor of a timer object named TestTimerName -->
 <xs:element name="TestTimer">
 <xs:complexType>
 <xs:attribute name="TestTimerName" type="xs:ID" />
 </xs:complexType>
 </xs:element>
 <!--Start timer counting -->
 <xs:element name="Start">
 <xs:complexType>
 <xs:attribute name="TestTimerName" type="xs:IDREF" />
 </xs:complexType>
 </xs:element>
 <!--Stop timer counting -->
 <xs:element name="Stop">
 <xs:complexType>
 <xs:attribute name="TestTimerName" type="xs:IDREF" />
 </xs:complexType>
 </xs:element>
 <!--Get current time count -->
 <xs:element name="GetTime">
 <xs:complexType>

126

 <xs:attribute name="TestTimerName" type="xs:IDREF" />
 <xs:attribute name="Time" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--==-->
 <!--Test Scheduler-->
 <!--==-->
 <!--Imports SCL file for Substation Automation System -->
 <xs:element name="ReadSCL">
 <xs:complexType>
 <xs:attribute name="File" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Imports XML Script file for testing -->
 <xs:element name="ReadScript">
 <xs:complexType>
 <xs:attribute name="Script" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Start running test case named Name -->
 <xs:element name="StartTestCase">
 <xs:complexType>
 <xs:attribute name="Name" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <!--Stop further script processing for Duration ms -->
 <xs:element name="Wait ">
 <xs:complexType>
 <xs:attribute name="Duration" type="xs:duration" />
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

127

Appendice D. UML Overview

D.1 Introduction

This Appendix is intended to introduce the reader to the concept of using different
UML diagrams for describing different aspects of the same function, depending on
the nature and requirements of the function. It is not meant to be the formal definition
of which diagrams are used or the correct format of the diagrams.

D.2 Function Definition

As described in section 2.2, functions in an SAS involve processing of a set of input
data to produce a set of output data. A function can be a simple process which is
self-contained inside a single module, or it can be complex and involve several mod-
ules which communicate with each other to achieve the desired outputs of the func-
tion. UML diagrams are used to show the differing levels of complexity depending on
the function being represented. This is done by different types of diagrams, each of
which is designed to illustrate a specific aspect of the function. Not all diagrams are
required for all functions.

The different uses of the diagrams can best be described by considering an everyday
example familiar to many people, a person starting a car.

Expressed as a function, a car starting function has the following overview:

Picture 31 – Car Starting Funcition

To start the car the driver must activate the start engine input (usually an ignition
key). The driver will maintain the activation of the start engine input until the engine is
started, which is observed through some sort of indication – e.g. ignition light goes
out – at which point the driver stops activating the start engine input. (We will assume
that the car starts within a few seconds, there is adequate fuel and the battery does
not lose its charge)

This function consists of a number of modules, such as the fuel system and the igni-
tion system, working together and performing specific operations to achieve the de-
sired output. Before we look at the types of UML diagram that may be used to de-
scribe the how these modules interact and what they do, we first need a way of de-
scribing the function itself. UML provides a suitable tool known as a USE CASE.

CAR
Start/Stop Engine Engine Running Indication

128

D.3 Use Case

A Use Case lists the functional steps that take place from the initial input to the final
output. The steps make reference to modules within the function to show the overall
interaction without itself describing how the modules actually relate to each other.

The Use Case below shows the car starting function.

This use case shows that not only are there operations performed by the driver, but
there are also operations performed by other parties – principally ‘Starter Motor’,
‘Fuel Pump’, ‘Engine’ and ‘Alternator’. All the parties are known as ACTORS in UML.
The use case shows which actors are involved in a specific function and what each
actor does in the execution of the function.

Note that use cases are not intended to identify all modules within the function, it is
expected that these are already known, their role is to describe how the modules
contribute to the achievement of the function. Note also that a system such as a car
may have many other modules – braking, steering etc. – that do not play a part in this
one specific function, and so are not shown in the use case.

D.4 Communication Diagram

Apart from the principle actor the other actors referenced in the use case are internal
modules which collaborate to achieve the desired outcome. This collaboration is an
essential aspect of the function’s operation and needs a method which describes it.
UML provides a Communication Diagram for this purpose, as shown on Picture 32.

Starting Car
1. Driver turns ignition key and waits
2. Starter motor starts and engages with engine flywheel
3. Fuel pump starts
4. Ignition system starts
5. Engine starts
6. Alternator generates sufficient electricity to extinguish ignition light
7. Driver sees ignition light extinguish and releases the ignition key
8. Starter motor stops and disengages from flywheel

129

Picture 32 – Start Car Communication Diagram

This illustrates how the different modules interact and what type of interaction (or da-
ta transfer) occurs. For example, the interaction between the fuel pump and the en-
gine is shown as the pump delivering fuel to the engine. The successful operation of
the function depends on all the modules interacting in the way shown in the diagram.
A failure of any one module, or any communication path, would prevent the success-
ful completion of the function. Note that this diagram is designed to show that an inte-
raction takes place between a number of modules, but does not easily show any in-
formation related to sequence of operations or timing requirements. This is especially
noticeable in the communication between the engine and starter motor where three
messages going in two directions are shown.

D.5 Sequential Diagram

To describe the sequential aspect of the function a UML Sequence Diagram is em-
ployed. This shows the same modules again interacting with the same communica-
tion mechanisms, but this time the diagram shows the order of operation.

Picture 33 – Car Starting Sequence Diagram

Fuel Pump Engine Ignition System

Start Delivering Fuel

Alternator

Start Firing Pulses

Start and Engage

Rotate

Starter Motor

Stop and disengage

Engine

Time

Fuel
Pump

Ignition
System

Engine

Engage and turn.
 Disengage.

Starter
Motor

Alternator

Rotates

Fuel

Firing Pulses

Engine Started

130

The diagram illustrates the sequence that the different modules interact in, beginning
with the starter motor starting and engaging, and ending with the starter motor disen-
gaging after the engine has started.

D.6 State Diagram

Obviously the car can only be started if it isn’t already running. It has to be in a
stopped state in order to then be started, and the act of starting it moves it from
stopped state to running state. Along the way there may be other interim states which
make up the behaviour of the car starting function and which may be important to
describe. This is done through a UML State Diagram which shows the states that the
car is in and the events that must occur for it to move from one state to another (tran-
sitions).

Picture 34 – Car Starting State Diagram

The State Diagram illustrates another aspect of the car starting system in that there
are times when the system is waiting for an event to occur, such as waiting for the
starter motor to engage, because these are not instantaneous actions. During these
times (states) other events could occur which could affect the function. For example,
the driver could turn the ignition off while the system was still engaging the starter
motor.

D.7 Other Functions

So far only starting the car has been examined as a function. Other functions would
require additional diagrams to describe them. For example the function for stopping
the car would need its own Use Case, Sequence Diagram and Communications Dia-
gram to show its behaviour.

Wait for Starter Motor to engage

Engine turning

Motor Engaged
/Start Fuel Pump and Ignition System

Engine startes
/Disengage starter motor

Wait for Starter Motor to disengage

Starter motor disengaged

Engine Running

Engine Stopped

Ignition Key Turned
/Start the starter motor

131

D.8 Conclusion

The reader should now have an appreciation of the different types of UML diagram
that are available and in what manner they should be used. All the different UML dia-
grams interrelate with each other to show the complete functional behaviour and the
processes and communication links that make up the total function. Other diagrams
may also be used that are not described above, such as activity diagrams or class
diagrams.

133

Appendice E. SCL Example Design Specification

The following is a listing of the SCL file that describes the SAS system used in this
example. It is syntactaly correct, tested against the IEC 61850 XML Schema, but
incomplete for some details unnecessary for this example.

<?xml version="1.0" encoding="utf-8"?>
<SCL xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.iec.ch/61850/2003/SCL
SCL.xsd"
xmlns="http://www.iec.ch/61850/2003/SCL">
 <Header id="SCL Example T1-1" nameStructure="IEDName">
 <History />
 </Header>
 <Substation name="S12" desc="Baden">
 <LNode lnInst="1" lnClass="IHMI" iedName="A1KA1" ldInst="C1" />
 <VoltageLevel sxy:x="10" sxy:y="10" name="D1"
xmlns:sxy="http://www.iec.ch/61850/2003/SCLcoordinates">
 <PowerTransformer sxy:x="386" sxy:y="190" name="T1">
 <LNode lnInst="1" lnClass="PDIF" iedName="D1Q2BP1" ldInst="F1" />
 <LNode lnInst="1" lnClass="TCTR" iedName="D1Q2SB2" ldInst="C1" />
 <TransformerWinding name="W1">
 <Terminal connectivityNode="S12/D1/Q2/L2" substationName="S12"
voltageLevelName="D1" bayName="Q2" cNodeName="L2" />
 </TransformerWinding>
 <TransformerWinding name="W2">
 <Terminal connectivityNode="S12/E1/Q3/L2" substationName="S12"
voltageLevelName="E1" bayName="Q3" cNodeName="L2" />
 </TransformerWinding>
 </PowerTransformer>
 <Voltage unit="V" multiplier="k">220</Voltage>
 <Bay sxy:x="10" sxy:y="45" name="Q2">
 <ConductingEquipment sxy:x="376" sxy:y="15" name="QA1" type="CBR">
 <LNode lnInst="1" lnClass="CSWI" iedName="D1Q2SB2" ldInst="C1" />
 <LNode lnInst="1" lnClass="XCBR" iedName="D1Q2SB1" ldInst="C1" />
 <Terminal connectivityNode="S12/D1/Q1/B0" substationName="S12"
voltageLevelName="D1" bayName="Q1" cNodeName="B0" />
 <Terminal connectivityNode="S12/D1/Q2/L1" substationName="S12"
voltageLevelName="D1" bayName="Q2" cNodeName="L1" />
 </ConductingEquipment>
 <ConductingEquipment sxy:x="376" sxy:y="75" name="I1" type="CTR">
 <Terminal connectivityNode="S12/D1/Q2/L1" substationName="S12"
voltageLevelName="D1" bayName="Q2" cNodeName="L1" />
 <Terminal connectivityNode="S12/D1/Q2/L2" substationName="S12"
voltageLevelName="D1" bayName="Q2" cNodeName="L1" />
 <SubEquipment name="R" phase="A">
 <LNode lnInst="1" lnClass="TCTR " iedName="D1Q1BP1" ldInst="F1"
/>
 </SubEquipment>
 <SubEquipment name="S" phase="B">
 <LNode lnInst="2" lnClass="TCTR " iedName="D1Q1BP1" ldInst="F1"
/>
 </SubEquipment>
 <SubEquipment name="T" phase="C">
 <LNode lnInst="3" lnClass="TCTR " iedName="D1Q1BP1" ldInst="F1"
/>
 </SubEquipment>

134

 <SubEquipment name="I0" phase="N">
 <LNode lnInst="4" lnClass="TCTR " iedName="D1Q1BP1" ldInst="F1"
/>
 </SubEquipment>
 </ConductingEquipment>
 <ConnectivityNode name="L1" pathName="S12/D1/Q2/L1" />
 <ConnectivityNode name="L2" pathName="S12/D1/Q2/L2" />
 </Bay>
 <Bay sxy:x="10" sxy:y="10" name="Q1">
 <ConnectivityNode name="B0" pathName="S12/D1/Q1/B0" />
 </Bay>
 </VoltageLevel>
 <VoltageLevel sxy:x="10" sxy:y="280" name="E1"
xmlns:sxy="http://www.iec.ch/61850/2003/SCLcoordinates">
 <Voltage unit="V" multiplier="k">132</Voltage>
 <Bay sxy:x="10" sxy:y="10" name="Q3" desc="Turgi">
 <ConductingEquipment sxy:x="376" sxy:y="75" name="QA1" type="CBR">
 <LNode lnInst="1" lnClass="CSWI" iedName="D1Q3SB2" ldInst="C1" />
 <LNode lnInst="1" lnClass="XCBR" iedName="D1Q3SB1" ldInst="C1" />
 <Terminal connectivityNode="S12/E1/Q3/L0" substationName="S12"
voltageLevelName="E1" bayName="Q2" cNodeName="L0" />
 <Terminal connectivityNode="S12/E1/Q3/L1" substationName="S12"
voltageLevelName="E1" bayName="Q2" cNodeName="L1" />
 </ConductingEquipment>
 <ConductingEquipment sxy:x="376" sxy:y="135" name="QB1" type="DIS">
 <LNode lnInst="2" lnClass="XSWI" iedName="D1Q3SB3" ldInst="C1" />
 <Terminal connectivityNode="S12/E1/Q4/B1" substationName="S12"
voltageLevelName="E1" bayName="Q4" cNodeName="B1" />
 <Terminal connectivityNode="S12/E1/Q3/L0" substationName="S12"
voltageLevelName="E1" bayName="Q2" cNodeName="L0" />
 </ConductingEquipment>
 <ConductingEquipment sxy:x="376" sxy:y="15" name="I1" type="CTR">
 <Terminal connectivityNode="S12/E1/Q3/L1" substationName="S12"
voltageLevelName="E1" bayName="Q2" cNodeName="L1" />
 <Terminal connectivityNode="S12/E1/Q3/L2" substationName="S12"
voltageLevelName="E1" bayName="Q2" cNodeName="L2" />
 <SubEquipment name="R" phase="A">
 <LNode lnInst="1" lnClass="TCTR " iedName="D1Q1SB3" ldInst="F1"
/>
 </SubEquipment>
 <SubEquipment name="S" phase="B">
 <LNode lnInst="2" lnClass="TCTR " iedName="D1Q1SB3" ldInst="F1"
/>
 </SubEquipment>
 <SubEquipment name="T" phase="C">
 <LNode lnInst="3" lnClass="TCTR " iedName="D1Q1SB3" ldInst="F1"
/>
 </SubEquipment>
 <SubEquipment name="I0" phase="N">
 <LNode lnInst="4" lnClass="TCTR " iedName="D1Q1SB3" ldInst="F1"
/>
 </SubEquipment>
 </ConductingEquipment>
 <ConnectivityNode name="L0" pathName="S12/E1/Q3/L0" />
 <ConnectivityNode name="L1" pathName="S12/E1/Q3/L1" />
 <ConnectivityNode name="L2" pathName="S12/E1/Q3/L2" />
 <ConnectivityNode name="L3" pathName="S12/E1/Q3/L3" />
 <ConnectivityNode name="L4" pathName="S12/E1/Q3/L4" />
 </Bay>

135

 <Bay sxy:x="10" sxy:y="225" name="Q4">
 <ConnectivityNode name="B1" pathName="S12/E1/Q4/B1" />
 </Bay>
 </VoltageLevel>
 </Substation>
 <Communication>
 <SubNetwork name="W01" type="8-MMS">
 <Text>Station bus</Text>
 <BitRate unit="b/s" multiplier="M">10</BitRate>
 <ConnectedAP iedName="D1Q2SB1" apName="S1">
 <Address>
 <P xsi:type="tP_IP" type="IP">10.0.0.11</P>
 <P xsi:type="tP_IP-SUBNET" type="IP-SUBNET">255.255.255.0</P>
 <P xsi:type="tP_IP-GATEWAY" type="IP-GATEWAY">10.0.0.101</P>
 <P xsi:type="tP_OSI-TSEL" type="OSI-TSEL">00000001</P>
 <P xsi:type="tP_OSI-PSEL" type="OSI-PSEL">01</P>
 <P xsi:type="tP_OSI-SSEL" type="OSI-SSEL">01</P>
 </Address>
 <GSE ldInst="C1" cbName="XCBRQ2Status">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-02</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="D1Q2SB2" apName="S1">
 <Address>
 <P xsi:type="tP_IP" type="IP">10.0.0.12</P>
 <P xsi:type="tP_IP-SUBNET" type="IP-SUBNET">255.255.255.0</P>
 <P xsi:type="tP_IP-GATEWAY" type="IP-GATEWAY">10.0.0.101</P>
 <P xsi:type="tP_OSI-TSEL" type="OSI-TSEL">00000001</P>
 <P xsi:type="tP_OSI-PSEL" type="OSI-PSEL">01</P>
 <P xsi:type="tP_OSI-SSEL" type="OSI-SSEL">01</P>
 </Address>
 <GSE ldInst="C1" cbName="CSWIQ2Status">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-04</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="D1Q2SB3" apName="S1">
 <Address>
 <P type="IP">10.0.0.13</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>

136

 </Address>
 <SMV ldInst="C1" cbName="Amper">
 <Address>
 <P type="MAC-Address">01-0C-CD-04-00-04</P>
 <P type="APPID">4000</P>
 <P type="VLAN-ID">123</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </SMV>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="D1Q2BP1" apName="S1">
 <Address>
 <P type="IP">10.0.0.14</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>
 </Address>
 <GSE ldInst="C1" cbName="Trip87">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-02</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 <P type="MAC-Address">01-0C-CD-01-00-06</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="E1Q3SB1" apName="S1">
 <Address>
 <P type="IP">10.0.0.15</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>
 </Address>
 <GSE ldInst="C1" cbName="XCBRQ3Status">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-06</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>

137

 <ConnectedAP iedName="E1Q3SB2" apName="S1">
 <Address>
 <P type="IP">10.0.0.16</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>
 </Address>
 <GSE ldInst="C1" cbName="CSWIQ3Status">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-04</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
 </GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="E1Q3SB3" apName="S1">
 <Address>
 <P type="IP">10.0.0.17</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>
 </Address>
<GSE ldInst="C1" cbName="XSWIQ3Status">
 <Address>
 <P type="MAC-Address">01-0C-CD-01-00-06</P>
 <P type="APPID">3001</P>
 <P type="VLAN-PRIORITY">4</P>
 </Address>
</GSE>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 <ConnectedAP iedName="A1KA1" apName="S1">
 <Address>
 <P type="IP">10.0.0.18</P>
 <P type="IP-SUBNET">255.255.255.0</P>
 <P type="IP-GATEWAY">10.0.0.101</P>
 <P type="OSI-TSEL">00000001</P>
 <P type="OSI-PSEL">01</P>
 <P type="OSI-SSEL">01</P>
 </Address>
 <PhysConn type="Plug">
 <P type="Type">FOC</P>
 <P type="Plug">ST</P>
 </PhysConn>
 </ConnectedAP>
 </SubNetwork>
 </Communication>
 <IED name="D1Q2SB1">

138

 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="XCBRQ2Pos">
 <FCDA ldInst="C1" prefix="" lnClass="XCBR" lnInst="1" do-
Name="Pos" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="Positions" rpt-
ID="E1Q1Switches" confRev="0">
 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">
 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>
 <LogControl name="Log" datSet="XCBRQ2Pos" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="XCBRQ2Status" datSet="XCBRQ2Pos" appID="Itl"
/>
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="XCBRa" lnClass="XCBR" inst="1" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="D1Q2SB2">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />

139

 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="CSWIQ2Pos">
 <FCDA ldInst="C1" prefix="" lnClass="CSWI" lnInst="1" do-
Name="Pos" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="CSWIQ2Pos" rpt-
ID="E1Q1Switches" confRev="0">
 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">
 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>
 <LogControl name="Log" datSet="CSWIQ2Pos" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="CSWIQ2Status" datSet="CSWIQ2Pos" appID="Itl"
/>
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="CSWIa" lnClass="CSWI" inst="2" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="D1Q2SB3">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />

140

 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="smv">
 <FCDA ldInst="C1" prefix="" lnClass="TCTR" lnInst="1" do-
Name="Amp" daName="instMag" fc="MX" />
 <FCDA ldInst="C1" prefix="" lnClass="TCTR" lnInst="2" do-
Name="Amp" daName="instMag" fc="MX" />
 </DataSet>
 <SampledValueControl name="Amper" datSet="smv" smvID="11"
smpRate="4800" nofASDU="5">
 <SmvOpts refreshTime="true" sampleSynchronized="true" sample-
Rate="true" />
 </SampledValueControl>
 </LN0>
 <LN lnType="TCTRa" lnClass="TCTR" inst="1" />
 <LN lnType="TCTRa" lnClass="TCTR" inst="2" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="D1Q2BP1">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="Trip87">

141

 <FCDA ldInst="C1" prefix="" lnClass="PDIF" lnInst="1" do-
Name="Op" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="Trip87" rpt-
ID="Diferential" confRev="0">
 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">
 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>
 <LogControl name="Log" datSet="Trip87" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="Trip87" datSet="Trip87" appID="Itl" />
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="PDIFa" lnClass="PDIF" inst="1" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="E1Q3SB1">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="XCBRQ3Pos">
 <FCDA ldInst="C1" prefix="" lnClass="XCBR" lnInst="1" do-
Name="Pos" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="XCBRQ3Pos" rpt-
ID="E1Q1Switches" confRev="0">

142

 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">
 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>
 <LogControl name="Log" datSet="XCBRQ3Pos" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="XCBRQ3Status" datSet="XCBRQ3Pos" appID="Itl"
/>
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="XCBRa" lnClass="XCBR" inst="1" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="E1Q3SB2">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="CSWIQ3Pos">
 <FCDA ldInst="C1" prefix="" lnClass="CSWI" lnInst="1" do-
Name="Pos" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="CSWIQ3Pos" rpt-
ID="E1Q1Switches" confRev="0">
 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">

143

 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>
 <LogControl name="Log" datSet="CSWIQ3Pos" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="CSWIQ3Status" datSet="CSWIQ3Pos" appID="Itl"
/>
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="CSWIa" lnClass="CSWI" inst="2" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="E1Q3SB3">
 <Services>
 <DynAssociation />
 <GetDirectory />
 <GetDataObjectDefinition />
 <GetDataSetValue />
 <DataSetDirectory />
 <ConfDataSet max="4" maxAttributes="50" />
 <ReadWrite />
 <ConfReportControl max="12" />
 <GetCBValues />
 <ConfLogControl max="1" />
 <ReportSettings cbName="Conf" datSet="Conf" rptID="Dyn" opt-
Fields="Conf" bufTime="Dyn" intgPd="Dyn" />
 <GSESettings cbName="Conf" datSet="Conf" appID="Conf" />
 <GOOSE max="2" />
 <FileHandling />
 <ConfLNs fixLnInst="true" />
 </Services>
 <AccessPoint name="S1">
 <Server>
 <Authentication />
 <LDevice inst="C1">
 <LN0 lnType="LN0" inst="">
 <DataSet name="XSWIQ3Pos">
 <FCDA ldInst="C1" prefix="" lnClass="XSWI" lnInst="1" do-
Name="Pos" fc="ST" />
 </DataSet>
 <ReportControl name="PosReport" datSet="CSWIQ3Pos" rpt-
ID="E1Q1Switches" confRev="0">
 <TrgOps dchg="true" qchg="true" />
 <OptFields />
 <RptEnabled max="5">
 <ClientLN lnClass="IHMI" lnInst="1" iedName="A1KA1"
ldInst="LD1" />
 </RptEnabled>
 </ReportControl>

144

 <LogControl name="Log" datSet="XSWIQ3Pos" logName="C1">
 <TrgOps dchg="true" qchg="true" />
 </LogControl>
 <GSEControl name="XSWIQ3Status" datSet="XSWIQ3Pos" appID="Itl"
/>
 </LN0>
 <LN lnType="LPHDa" lnClass="LPHD" inst="1">
 <DOI name="Proxy">
 <DAI name="stVal">
 <Val>false</Val>
 </DAI>
 </DOI>
 </LN>
 <LN lnType="CSWIa" lnClass="CSWI" inst="2" />
 </LDevice>
 </Server>
 </AccessPoint>
 </IED>
 <IED name="A1KA1">
 <AccessPoint name="S1" />
 </IED>
 <DataTypeTemplates>
 <LNodeType id="LN0" lnClass="LLN0">
 <DO name="Mod" type="myMod" />
 <DO name="Health" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="NamPlt" type="myLPL" />
 </LNodeType>
 <LNodeType id="LPHDa" lnClass="LPHD">
 <DO name="Mod" type="myMod" />
 <DO name="Health" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="NamPlt" type="myLPL" />
 <DO name="PhyNam" type="myDPL" />
 <DO name="PhyHealth" type="myINS" />
 <DO name="Proxy" type="mySPS" />
 </LNodeType>
 <LNodeType id="CSWIa" lnClass="CSWI">
 <DO name="Mod" type="myMod" />
 <DO name="Health" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="Pos" type="myPos" />
 <DO name="GrpAl" type="mySPS" />
 </LNodeType>
 <LNodeType id="MMXUa" lnClass="MMXU">
 <DO name="Mod" type="myMod" />
 <DO name="Beh" type="myHealth" />
 <DO name="Health" type="myBeh" />
 <DO name="Amps" type="myMV" />
 <DO name="Volts" type="myMV" />
 </LNodeType>
 <LNodeType id="CILOa" lnClass="CILO">
 <DO name="Mod" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="Health" type="myINS" />
 <DO name="EnaOpen" type="mySPS" />
 <DO name="EnaClose" type="mySPS" />
 </LNodeType>
 <LNodeType id="TVTRa" lnClass="TVTR">

145

 <DO name="Mod" type="myMod" />
 <DO name="Health" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="Vol" type="mySAV" />
 </LNodeType>
 <LNodeType id="RSYNa" lnClass="RSYN">
 <DO name="Mod" type="myMod" />
 <DO name="Health" type="myHealth" />
 <DO name="Beh" type="myBeh" />
 <DO name="NamPlt" type="myLPL" />
 <DO name="Rel" type="mySPS" />
 </LNodeType>
 <DOType id="myMod" cdc="INC">
 <DA name="ctlVal" bType="Enum" type="Mod" fc="CO" />
 <DA name="stVal" bType="Enum" type="Mod" dchg="true" fc="ST" />
 <DA name="q" bType="Quality" dchg="true" fc="ST" />
 <DA name="t" bType="Timestamp" dchg="true" fc="ST" />
 </DOType>
 <DOType id="myHealth" cdc="INS">
 <DA name="stVal" bType="Enum" type="Health" dchg="true" fc="ST" />
 </DOType>
 <DOType id="myBeh" cdc="INS">
 <DA name="stVal" bType="Enum" type="Beh" dchg="true" fc="ST" />
 </DOType>
 <DOType id="myINS" cdc="INS">
 <DA name="stVal" bType="INT32" dchg="true" fc="ST" />
 </DOType>
 <DOType id="myLPL" cdc="LPL">
 <DA name="ldNs" bType="VisString255" fc="EX">
 <Val>IEC61850-7-4:2003</Val>
 </DA>
 <DA name="configRev" bType="VisString255" fc="DC">
 <Val>Rev 3.45</Val>
 </DA>
 </DOType>
 <DOType id="myDPL" cdc="DPL">
 <DA name="vendor" bType="VisString255" fc="DC">
 <Val>myVendorName</Val>
 </DA>
 <DA name="hwRev" bType="VisString255" fc="DC">
 <Val>Rev 1.23</Val>
 </DA>
 </DOType>
 <DOType id="myPos" cdc="DPC">
 <DA name="stVal" bType="Dbpos" type="Dbpos" dchg="true" fc="ST" />
 <DA name="q" bType="Quality" qchg="true" fc="ST" />
 <DA name="t" bType="Timestamp" fc="ST" />
 <DA name="ctlVal" bType="BOOL" fc="CO" />
 </DOType>
 <DOType id="mySPS" cdc="SPS">
 <DA name="stVal" bType="INT32" dchg="true" fc="ST" />
 <DA name="q" bType="Quality" qchg="true" fc="ST" />
 <DA name="t" bType="Timestamp" fc="ST" />
 </DOType>
 <DOType id="myMV" cdc="MV">
 <DA name="mag" bType="Struct" type="myAnalogValue" dchg="true"
fc="MX" />
 <DA name="q" bType="Quality" qchg="true" fc="MX" />
 <DA name="t" bType="Timestamp" fc="MX" />

146

 <DA name="sVC" bType="Struct" type="ScaledValueConfig" dchg="true"
fc="CF" />
 </DOType>
 <DOType id="myCMV" cdc="CMV">
 <DA name="cVal" bType="Struct" type="myVector" dchg="true" fc="MX" />
 <DA name="q" bType="Quality" qchg="true" fc="MX" />
 <DA name="t" bType="Timestamp" fc="MX" />
 </DOType>
 <DOType id="mySEQ" cdc="SEQ">
 <SDO name="c1" type="myCMV" />
 <SDO name="c2" type="myCMV" />
 <SDO name="c3" type="myCMV" />
 <DA name="seqT" bType="Enum" type="seqT" fc="MX" />
 </DOType>
 <DOType id="mySAV" cdc="SAV">
 <DA name="instMag" bType="Struct" type="myAnalogValue" fc="MX" />
 <DA name="q" bType="Quality" qchg="true" fc="MX" />
 </DOType>
 <DAType id="myAnalogValue">
 <BDA name="f" bType="FLOAT32" />
 </DAType>
 <DAType id="ScaledValueConfig">
 <BDA name="scaleFactor" bType="FLOAT32" />
 <BDA name="offset" bType="FLOAT32" />
 </DAType>
 <DAType id="myVector">
 <BDA name="mag" bType="Struct" type="myAnalogValue" />
 <BDA name="ang" bType="Struct" type="myAnalogValue" />
 </DAType>
 <EnumType id="ACDdir">
 <EnumVal ord="0">unknown</EnumVal>
 <EnumVal ord="1">forward</EnumVal>
 <EnumVal ord="2">backward</EnumVal>
 <EnumVal ord="3">both</EnumVal>
 </EnumType>
 <EnumType id="seqT">
 <EnumVal ord="0">pos-neg-zero</EnumVal>
 <EnumVal ord="1">dir-quad-zero</EnumVal>
 </EnumType>
 <EnumType id="Dbpos">
 <EnumVal ord="0">intermediate</EnumVal>
 <EnumVal ord="1">off</EnumVal>
 <EnumVal ord="2">on</EnumVal>
 <EnumVal ord="3">bad</EnumVal>
 </EnumType>
 <EnumType id="Tcmd">
 <EnumVal ord="0">stop</EnumVal>
 <EnumVal ord="1">lower</EnumVal>
 <EnumVal ord="2">higher</EnumVal>
 <EnumVal ord="3">reserved</EnumVal>
 </EnumType>
 <EnumType id="Beh">
 <EnumVal ord="1">on</EnumVal>
 <EnumVal ord="2">blocked</EnumVal>
 <EnumVal ord="3">test</EnumVal>
 <EnumVal ord="4">test/blocked</EnumVal>
 <EnumVal ord="5">off</EnumVal>
 </EnumType>
 <EnumType id="Mod">

147

 <EnumVal ord="1">on</EnumVal>
 <EnumVal ord="2">blocked</EnumVal>
 <EnumVal ord="3">test</EnumVal>
 <EnumVal ord="4">test/blocked</EnumVal>
 <EnumVal ord="5">off</EnumVal>
 </EnumType>
 <EnumType id="Health">
 <EnumVal ord="1">Ok</EnumVal>
 <EnumVal ord="2">Warning</EnumVal>
 <EnumVal ord="3">Alarm</EnumVal>
 </EnumType>
 </DataTypeTemplates>
</SCL>

149

Glossary

ACSI Abstract Communication Service Interface
BRCB Buffered Report Control Block
CDC Common Data Class
GOOSE Generic Object Oriented Substation Event
GSE Generic Substation Event
GSSE Generic Substation State Event
HMI Human Machine Interface
IED Intelligent Electronic Device
LD Logical Device
LN Logical Node
MCAA Multicast Application Association
MMS Manufacturer Message Specification
MSS Main Success Scenario
OPC OLE for Process Control
OSI Open Systems Interconnection
PAS Power Station System
PICOM Piece of Information for COMmunication
PLC Programmable Logic Controller
RCB Report Control Block
SCADA Supervisory Control and Data Acquisition
SCL Substation Configuration Language
SCSM Specific Communication Service Mapping
SGCB Setting Group Control Block
SV Sampled Values
TPAA Two Party Application Association
UML Unified Modeling Language
URCB Un-buffered Report Control Block
XML Extensible Mark-up Language

151

References

Standards

[1] IEC 61850-1: Communication networks and systems in substations – Part 1:

Introduction and Overview, International Electro technical Commission, Swit-
zerland.

[2] IEC TS 61850-2: Communication networks and systems in substations – Part
2: Glossary, International Electro technical Commission, And Switzerland.

[3] IEC 61850-3: Communication networks and systems in substations – Part 3:
General requirements, International Electro technical Commission, Switzer-
land.

[4] IEC 61850-4: Communication networks and systems in substations – Part 4:
System and project management, International Electro technical Commis-
sion, Switzerland.

[5] IEC 61850-5: Communication networks and systems in substations – Part 5:
Communication requirements for functions and device models, International
Electro technical Commission, Switzerland.

[6] IEC 61850-6: Communication networks and systems in substations – Part 6:
Configuration description language for communication in electrical substa-
tions related to IEDs, International Electrotechnical Commission, Switzerland.

[7] IEC 61850-7-1: Communication networks and systems in substations – Part
7-1: Basic communication structure for substation and feeder equipment –
Principles and models, International Electrotechnical Commission, Switzer-
land.

[8] IEC 61850-7-2: Communication networks and systems in substations – Part
7-2: Basic communication structure for substation and feeder equipment –
Abstract communication service interface (ACSI), International Electrotech-
nical Commission, Switzerland.

[9] IEC 61850-7-3: Communication networks and systems in substations – Part
7-3: Basic communication structure for substation and feeder equipment –
Common data classes, International Electrotechnical Commission, Switzer-
land.

[10] IEC 61850-7-4: Communication networks and systems in substations – Part
7-4: Basic communication structure for substation and feeder equipment –
Compatible logical node classes and data classes, International Electrotech-
nical Commission, Switzerland.

[11] IEC 61850-7-410: Communication networks and systems for power utility
automation – Part 7-410: Hydroelectric power plants – Communication for
monitoring and control, International Electrotechnical Commission, Switzer-
land.

[12] IEC 61850-8-1: Communication networks and systems in substations – Part
8-1: Specific Communication Service Mapping (SCSM) – Mappings to MMS

152

(ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3, International Electro-
technical Commission, Switzerland.

[13] IEC 61850-9-1: Communication networks and systems in substations – Part
9-1: Specific Communication Service Mapping (SCSM) – Sampled values
over serial unidirectional multidrop point to point link, International Electro-
technical Commission, Switzerland.

[14] IEC 61850-9-2: Communication networks and systems in substations – Part
9-2: Specific Communication Service Mapping (SCSM) – Sampled values
over ISO/IEC 8802-3, International Electrotechnical Commission, Switzer-
land.

[15] IEC 61850-10: Communication networks and systems in substations – Part
10: Conformance Testing, International Electrotechnical Commission, Swit-
zerland.

[16] IEC 60870-5-101: Telecontrol equipment and systems – Part 5-101: Trans-
mission protocols – Companion standard for basic telecontrol tasks, Interna-
tional Electrotechnical Commission, Switzerland.

[17] IEC 60870-5-103: Telecontrol equipment and systems – Part 5-103: Trans-
mission protocols – Companion standard for the informative interface of pro-
tection equipment, International Electrotechnical Commission, Switzerland.

[18] IEC 60870-5-104: Telecontrol equipment and systems – Part 5-104: Trans-
mission protocols – Network access for IEC 60870-5-101 using standard
transport profiles, International Electrotechnical Commission, Switzerland.

[19] IEC 60870-6: Telecontrol equipment and systems – Part 6: Telecontrol pro-
tocols compatible with ISO standards and ITU-T recommendations, Interna-
tional Electrotechnical Commission, Switzerland.

[20] IEC 61346: Industrial systems, installations and equipment and industrial
products – Structuring principles and reference designations, International
Electrotechnical Commission, Switzerland.

[21] IEEE Std C37.2:1996, IEEE Standard Electrical Power System Device Func-
tion Numbers and Contact Designations

[22] IEC 61882: Hazard and Operability Studies (HAZOP Studies) - Application
Guide, International Electrotechnical Commission, Switzerland.

[23] IEC 61882: Analysis techniques for system reliability – Procedure for failure
mode and effects analysis (FMEA), International Electrotechnical Commis-
sion, Switzerland.

[24] OMG, UML Testing Profile, The Object Management Group, available on
www.omg.org, 2005.

[25] W3C, Extensible Markup Language (XML), The World Wide Web Consor-
tium, available on www.w3.org, 2006.

Books

[1] Tsai, J. J. P., Bi, Y., Yang, S. J. H., Smith, R. A. W., Distributed Real-Time

153

Systems: Monitoring, Visualization, Debugging, and Analysis, John Wiley &
Sons, Inc., New York, 1996.

[2] Bradley, N., The XML Schema Companion, Addison-Wesley, Boston, 2004.

[3] Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition, Addison-Wesley Professional, New York, 2003.

[4] Douglass, B. P., Real Time UML: Advances in the UML for Real-Time Sys-
tems (3rd Edition), Addison-Wesley Professional, New York, 2004.

Papers

[5] K. P. Brand et al, First experiences with customer specifications of IEC

61850 based Substation Automation Systems, Cigré SC B5 Colloquium
2005, Paper 203.

[6] K. P. Brand et al, The Introduction of IEC 61850 and its Impact on Protection
and Automation within Substation, Cigré Electra Magazine, n. 233, August
2007.

